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ABSTRACT A recent collaboration between federal, state and private partners in southeast Oregon
developed mental models to distill complex plant‐based community ecology for management. The
mental models were then turned into a simplified, habitat‐classification system that addressed
landscape‐level threats to the sagebrush ecosystem. The simplified, habitat‐classification system
formed the foundation of Threat‐based State and Transition Models (TBSTM). We quantitatively
linked greater sage‐grouse (Centrocercus urophasianus, hereafter sage‐grouse) lek occurrence to a
landscape‐level habitat classification based upon the TBSTM framework. We investigated whether
TBSTM classifications were able to spatially predict locations of sage‐grouse breeding areas equiv-
alently to landcover variables that have been studied for over a decade. We showed the TBSTM
framework was able to predict the locations of sage‐grouse accurately (R2 = 0.70, AUC = 0.91,
Correctly Classified = 83%). Model fit statistics were similar to the model built with traditional land
cover variables (R2 = 0.65, AUC = 0.89, Correctly Classified = 80%). The high degree of model fit
for the TBSTM framework allows conservation practitioners a direct, quantifiable, and biological
link to understand outcomes of transitioning habitats from various threat states to sagebrush‐
dominated landscapes with a perennial understory across large landscapes. Sage‐grouse are well
known to respond to landscape‐level amounts of habitat and exhibit low tolerance to threats. We
documented similar responses between threats such as the percentage of conifers within 560‐m and
the conifer threat bin at the same spatial scale. Our work also quantified the importance of having a
healthy perennial‐grass understory and perennial‐grass patches in conjunction with sagebrush cover
across large landscapes. Our work suggests that understory grass communities at landscape scales may
be limiting grouse occurrence in certain parts of Oregon. © 2021 The Authors. Wildlife Society
Bulletin published by Wiley Periodicals LLC on behalf of The Wildlife Society.

KEY WORDS Conifer encroachment, cheat grass, greater sage‐grouse, landscape conservation, perennial bunch
grass, resource selection function, sagebrush, Threat‐based State and Transition Models.

Ecosystems across the world have been fundamentally altered by
both contemporaneous and legacy impacts of humans, and the
rate of ecosystem change has increased in recent decades
(Millennium‐Ecosystem‐Assessment 2005). Mitigating the ef-
fects of change on wildlife species has been characterized by
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policies designed to ameliorate specific threats (Boyd
et al. 2014a). Such policies have been useful in staving off
species declines when causative agents are tied to specific an-
thropogenic factors that can be easily regulated (Grier 1982).
However, the same policies do not eliminate the need for active
management of conservation‐reliant plant and animal species
(Scott et al. 2005, Scott et al. 2010), or species impacted by
more complex problems associated with ecosystem dysfunction
(Benson 2012). For such species, effective conservation is syn-
onymous with adaptively managing persistent and complex
threats (Boyd and Svejcar 2009) to the ecosystem processes that
create and maintain functional habitat (Meretsky et al. 2000,
Evans et al. 2013).
Sage‐steppe vegetation in the northern Great Basin of the

U.S. is being threatened by a variety of factors including direct
conversion through anthropogenic development and habitat
modifications (USFWS‐DOI 2010) and indirect conversion as
a secondary consequence of ecosystem dysfunction. Ecosystem
dysfunction is being driven by both present day and legacy
factors that exacerbate invasion of annual grasses and expansion
of native conifer populations, primarily Western Juniper (Juni-
perus occidentalis), both of which are associated with altered fire
regimes (Davies et al. 2011). Invasion of annual grasses and
expansion of native conifer populations represent complex and
persistent ecosystem threats that are not likely to be ameliorated
using regulatory‐based approaches alone, and instead require
sustained conservation investment and an adaptive approach to
management within a multi‐stakeholder framework. For ex-
ample, restoration of sagebrush habitat invaded by exotic annual
grasses such as cheatgrass (Bromus tectorum) is a
two‐part process involving minimizing the abundance of un-
wanted annuals while restoring desired perennial vegetation. A
variety of chemical and biologically‐based options are available
for reducing annual grass abundance (Davies et al. 2014).
However, the appropriate techniques and practices for restora-
tion of desired perennials vary in both space and time in ac-
cordance with a multitude of biotic and abiotic factors such that
appropriate management depends on both seasonal timing and
ecological location (Boyd and Svejcar 2009).
Disconnect between complex ecosystem problems and con-

temporary land‐management policy and decision‐making is
highlighted by the challenges inherent in conservation of greater
sage‐grouse (Centrocercus urophasianus, hereafter sage‐grouse).
Populations of sage‐grouse are declining in association with
both species‐specific, as well as ecosystem‐based, problems such
as conifer and annual grass invasion (Knick and Connelly 2011).
Policy and regulations can be effective for species‐specific issues
such as energy development (Walker et al. 2007), but it would
be impractical to attempt to regulate exotic annual grass sim-
ilarly (Boyd et al. 2014a). Estimates suggest that habitat in-
vasion by exotic annual grasses and‐or expansion of native
conifer populations is a widespread threat to 33 of 39 major
sage‐grouse populations (USFWS‐DOI 2013). Addressing
these issues is complicated by the fact that there is a growing
diversity of societal values and expectations being placed on
natural resources that lead to differing expectations and defi-
nitions of management success.

Improving communication and building trust through par-
ticipatory decision making can lead to better conservation out-
comes and social acceptance of conservation decisions (Addison
et al. 2013). Key to participatory process is the development of a
shared vision (Biggs et al. 2011). Creating threat‐associated,
mental ecological models with a diverse set of stakeholders can
facilitate the creation of shared vision, because mental models
translate complex ecological information into tangible and im-
plementable conservation projects (Biggs et al. 2011). To facil-
itate large‐scale adoption of conservation practices on private
lands in Oregon, researchers, agency employees, and landowners
developed mental models that focused on two pervasive threats
to the sagebrush ecosystem: invasive annual grasses and conifer
encroachment (Johnson et al. 2019). The process used State and
Transition Models (STM) to classify variation in current plant
community composition and structure (states) and described
associated factors that drive plant community transitions from
one state to another (Westoby et al. 1989). Over a 6‐year period,
the group developed Threat‐based State and Transition Models
(TBSTM), which simplified existing STMs with the intent of
facilitating stakeholder communication and conservation de-
livery. The TBSTM framework adopted the original approach
proposed by Westoby et al. (1989) in which only major vege-
tation states were identified. The simple TBSTM models al-
lowed stakeholders to focus effort on the most ecologically
important threats to sage‐grouse habitat in the Northern Great
Basin, improve communication, build stakeholder agreement,
and empower decision‐making at large spatial scales. Because
ecological states within models could be mapped at large spatial
scales, they were widely adopted and are currently being used to
inform rangeland management planning on over 1.5 million ha
of public and private sagebrush rangeland in eastern Oregon.
Although ecological constructs supporting TBSTMs are

generally well understood, the mental model framework is more
relevant if it is quantitatively related to prominent management
and policy challenges, such as allocating conservation effort in
sage‐grouse habitat. The TBSTMs were not initially empirically
validated in relation to target metrics such as sage‐grouse habitat
selection. Given the wide adoption of these models by man-
agement agencies and conservation providers to improve sage‐
grouse habitat, it has become essential to understand whether
these models accurately reflect the occurrence of sage‐grouse on
the landscape.
The objective of our study was to determine the quan-

titative linkage between sage‐grouse habitat selection and
the TBSTM framework. We developed spatially‐
predictive models using both traditional landcover varia-
bles, such as percent sagebrush within a 560‐m or 6440‐m
buffer, and models that placed the TBSTM into landscape
level ecologically‐based bins, such as the percent State A
(i.e., sagebrush cover with a perennial grass understory;
Fig. 1, Table 1) within the same spatial scales. We eval-
uated if the ecologically based landcover classification bins
from the TBSTM mental model could spatially predict
locations of sage‐grouse breeding areas equivalent to tra-
ditional landcover variables that have been studied for over
a decade.

474 Wildlife Society Bulletin • 45(3)

1034



STUDY AREA

Our study incorporated data collected between March
2013 and June 2017 in portions of 6 Oregon counties:
Union, Baker, Grant, Malheur, Harney, and Lake.

Within that broader geography, we specifically inves-
tigated 8 sage‐grouse priority areas for conservation
(PACs): 4 within the Snake River Plain Management
Zone (Baker, Cow Valley, Bully Creek and Drewsey
PACs) and 4 within the Northern Great Basin

Figure 1. Conceptual ecological framework for managing sage‐grouse habitat using generalized Threat‐based state‐and‐transition models for sagebrush
habitats threatened by annual grasses (top model) and by both annual grasses and expanding conifers (bottom model) in southeast Oregon, USA. States
represent generalized categories of habitat structure and composition that are broadly representative of the variation in areas threatened by invasive annual
grasses, or invasive annual grasses and conifers (Fuller et al. 2018, Johnson et al. 2019). Transition factors depict management and non‐management factors
that move habitat structure and composition between states.
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Management Zone (Dry Valley‐Jack Mountain, Steens,
Beatys and Pueblo‐S. Steens PACs; Fig. 2). The total
study area size was 7,202,928 hectares (~17.8 million
acres) and the area mapped within PACs with a 5‐km
buffer was 2,628,016 hectares (~6.5 million acres; Fig. 2).
The study area encompassed the full latitudinal gradient
in vegetative type present in Oregon, as well as important
differences in the degree of primary threats to sage‐grouse.
For example, the Baker PAC (Fig. 2) was the northern-
most PAC in the study area and lek counts had declined
75% from 2003 to 2017 (Bureau of Land Management,
unpublished data). Primary threats to the Baker PAC
were invasive weeds and conifer encroachment. In con-
trast, the Beaty’s PAC was the largest PAC within Or-
egon and contained the most robust sage‐grouse pop-
ulation in the state with a slightly increasing trend (L.
Foster, Oregon Department of Fish and Wildlife, un-
published data). The Beaty’s PAC was among the least
fragmented and largest sagebrush‐dominated landscapes
within the extant range of sage‐grouse (Knick and
Hanser 2011).

METHODS

We quantitatively linked sage‐grouse lek occurrence to a
landscape level habitat classification based upon the
TBSTM framework. We investigated whether TBSTM
variables were able to spatially predict locations of
sage‐grouse breeding areas equivalently to landcover varia-
bles that have been studied for over a decade. We built
spatially‐predictive models using both landcover variables,
such as percent sagebrush within a 560‐m or 6440‐m buffer,
and variables which quantified the amount of TBSTM
landscape level habitat classes (e.g., amount of State A
within the same spatial scales).

Response Data
We used lek locations as a surrogate for nesting and early brood‐
rearing habitat because persistent lek formation is unlikely to
occur in landscapes that do not support recruitment through
time. Numerous publications have shown lek locations to be
good predictors of important breeding areas for sage‐grouse at
landscape scales (Holloran and Anderson 2005, Doherty
et al. 2010, Doherty et al. 2011, Coates et al. 2013, Fedy
et al. 2014). In this regard, we are modeling lek locations as a
surrogate to represent the landscapes that support successful
nesting and early brood‐rearing habitat critical to recruitment
and maintenance of sage‐grouse populations. Nesting females
exhibit strong site fidelity with much longer distances between
interannual nest sites for unsuccessful nesters vs. successful
nesters (e.g., average distances 5.2 km vs. 1.6 km [Schroeder and
Robb 2003], 0.5 km vs. 0.3 km [Holloran and An-
derson 2005]). Through time, nest site fidelity promotes se-
lection for less‐risky habitats as sage‐grouse slowly move away
from areas that do not support recruitment (Holloran
et al. 2010).
We used locations of active sage‐grouse leks (n= 311) during

2013–2017 and pseudo‐absence points (n= 622) to quantify the
biological link between sage‐grouse occurrence, traditional
landcover variables, and TBSTM habitat classification. A lek
was defined as active for analyses if there were≥2 males counted
during the most recent survey between 2013 and 2017. There
have been extensive efforts in Oregon to identify sage‐grouse lek
locations over the last decade including both aerial and ground‐
based survey efforts (Foster 2017). Although it is likely some
unidentified leks exist, we are confident that the spatial proc-
esses governing lek locations were well represented in the data
(Foster 2017).

Predictor Data
Variable descriptions.—We distilled the sage‐grouse habitat

selection literature behind the traditional landcover model and
the TBSTM model (Tables 1–3). We included descriptions of
why variables were tested and the primary literature that
supports inclusion. The tables include both variables that have
been used in traditional landcover models and variables that put
the TBSTM framework into a landscape context as well as
abiotic variables used in both analyses. Transition factors that
move habitats between states are not a specific focus of the
current effort but are documented in the literature (Davies
et al. 2011, Boyd et al. 2014a, Johnson et al. 2019).

Figure 2. Spatial representation of the Threat‐based State and Transition
(TBSTM) framework in eastern Oregon, USA, during 2017. The TBSTM
is a coarse representation of 9 sage‐steppe vegetation states (ecologically‐
based bins) derived by simplifying desired sagebrush community
characteristics and their primary ecological threats. The map shows the
spatial location of State A habitats across Sage‐grouse Priority Area of
Conservation (PACs) in eastern Oregon, USA, in 2017. State A habitat
represents sagebrush‐dominated landscapes with perennial grass and forb
understories. Lek data represent the average lek counts between 2013
and 2017.
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The TBSTM framework is a coarse representation of
9 sage‐steppe vegetation states (ecologically‐based bins) derived
by simplifying desired sagebrush community characteristics and
their primary ecological threats in Oregon (Fig. 1). In our case,
threats are invasive annual grasses and expanding conifer pop-
ulations and we built a separate model for each of these vege-
tation states. States vary on an A–E scale, with State A habitat
as an expression of both a healthy sagebrush overstory, and
perennial bunchgrass understory. State B habitat is perennial
grassland lacking sagebrush cover. States C–E habitat are an
increasing expression of either invasive annual grass, conifers, or
both, with concomitant reduction in sagebrush and‐or perennial
grasses (Fig. 1). For the purposes of quantitatively linking the
TBSTM to sage‐grouse, we combined all conifer threat states
into a single class because of known avoidance of conifer trees
(Doherty et al. 2008, Baruch‐Mordo et al. 2013, Fedy
et al. 2014). However, for habitat treatment the TBSTM
framework has 3 Threat‐based conifer states, all of which cor-
respond to different conifer management options (Johnson
et al. 2019).
We developed a TBSTM habitat classification map

(Fig. 2) across much of the sage‐grouse range in Oregon
using the published methods of Sant et al. (2014). The
landcover mapping system of Sant et al. (2014) classifies
each 30‐m pixel in the landscape into 9 categories
(Table 1) representing habitat states described by the
TBSTM framework (Fig. 1). Thus, our TBSTM habitat
classification map generalizes vegetation communities
based on cover of sagebrush, native perennial bunch-
grasses, conifers, and invasive annual grasses, and describes
the factors which may cause community transition between
these states (Johnson et al. 2019). Accuracies of the
TBSTM map support landscape level modeling and
ranged from 73% to 84% in mapped areas in PACs (E.
Sant, US Fish and Wildlife Service, unpublished data).
Scale.—Past research has shown thresholds of habitat selection

at multiple scales affect sage‐grouse habitat use. We quantified
how much state A habitat (i.e., sagebrush cover with a perennial
grass understory) was needed to promote habitat selection by
sage‐grouse. We also wanted to quantify thresholds of threats as
classified by the TBSTM that would preclude habitat use by
sage‐grouse (i.e., the percent of State C, D, and conifer within
either 560m or 6440m, Table 1). We produced response curves
for all variables retained in the final model to understand the
scale(s) at which TBSTM habitat are selected and how
occupancy changes with different percentages of TBSTM
bins (Table 1) in the larger landscape. Variable response curves
depict the relationship between habitat selection and each
predictor variable in the final model. Variable response curves
are produced by iterating through the entire observed range of a
predictor variable while holding all other variables at their mean
values (Young 2012). We included measures of precision for all
relationships at various significance levels so practitioners could
understand both the shape and precision of the habitat
relationship. To understand the relative influence of each
habitat predictor, we successively computed the change in AUC
when each individual predictor was removed from the final
model (Young 2012).T
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Variable Groupings.—We conducted a simple statistical test
to see if a model that used the TBSTM framework to describe
habitat (Fig. 1, Tables 1 and 2) could compete with other
variables that have been used for over a decade to
model sage‐grouse habitat selection (Tables 2 and 3). Lek
occurrence is influenced by patterns of vegetation, as well as
heterogeneity in abiotic factors such as topography and climate
(Doherty et al. 2010, Ricca et al. 2018). We created
2 potential suites of habitat predictor variables for sage‐grouse
and compiled them into a GIS database representing biotic
(Tables 1 and 3) and abiotic variables of ecological relevance
(Table 2). We characterized the percent of biotic and abiotic
variables at 560m and 6440m distances from leks and pseudo‐
absence points because these distances are known to be
important for breeding habitat selection for sage‐grouse
(Aldridge et al. 2012, Doherty et al. 2016, 2018). The first
model suite consisted of TBSTM biotic habitat variables
(Table 1). The second model suite consisted of traditional biotic
variables derived from LANDFIRE 1.4.0 (LANDFIRE 2014)
(Table 3). We held our suite of abiotic variables (Table 2)
constant between models to allow a direct comparison of how
well the TBSTM biotic habitat classes predicted lek occurrence
compared to traditional biotic variables derived from
LANDFIRE 1.4.0 (LANDFIRE 2014).

Statistical Modeling
We modeled the presence of active lek locations with a
generalized linear model with a logit‐link function
throughout the spatial extent of the TBSTM habitat clas-
sification map (Fig. 2). We compared habitat characteristics
surrounding active lek locations to habitat characteristics
around random pseudo‐absence locations constrained
within a minimum convex polygon that contained all active
lek locations. Our breeding habitat model provided the
probability of each 30‐m grid cell containing sufficient
habitat to support an occupied lek.
We used the Software Assisted Habitat Modeling (SAHM)

(Morisette et al. 2013) program developed by the U.S. Geo-
logical Survey to generate fit statistics between models devel-
oped with traditional landcover variables (Table 3) and those
built using the TBSTM to represent biotic habitat components
(Table 1). We specifically chose the SAHMmodeling interface
to R (R Core Team 2018), because the SAHM framework has
been widely tested, is peer reviewed (Morisette et al. 2013), and
research that used SAHM has been extensively published in a
wide variety of journals (Luo et al. 2015, Evangelista et al. 2018,
Jarnevich et al. 2018).
We used the standard model fitting procedure in SAHM

for generalized linear models (Young 2012). The SAHM uses
open‐source R code to implement statistical models within
program R (R Core Team 2018) through the SAHM inter-
face (Morisette et al. 2013). We did not allow 2 variables to be
in a candidate variable set if their univariate correlations were
>0.7. Models were fit by first calculating an Akaike In-
formation Criterion (AIC) score to a null model and all in-
dividual covariates in the model. We first added the variable
that most improved AIC over the null model. We treated
the resultant model as fixed and repeated the step with the

additional variables. The model selection procedure was
completed when there was no improvement in AIC with the
addition or removal of variables (Young 2012). We allowed
both quadratic functions and interactions between variables in
our analyses as we knew a priori that sagebrush and perennial
grass resilience to disturbances and resistance to invasive
species occur within climatic envelopes and interact with other
biotic factors (Chambers et al. 2017). Further, numerous
publications have documented quadratic functional response
curves to habitat selection of sage‐grouse (Connelly
et al. 2000, Hagen et al. 2007).
We compared 3 validation statistics between the tradi-

tional landcover and TBSTM models to understand model
fit. We evaluated percent correctly classified, area under the
curve (AUC), and coefficient of determination (R2) to de-
termine model fit. We felt modeling quadratic functions
and interactions was biologically warranted, but also knew
this could lead to an over‐fit model. Therefore, we inves-
tigated relative loss in predictive power through k‐fold
cross‐validation which consisted of 10% of lek and pseudo‐
absence locations. Our premise was simple: if we had high
fit statistics when building the models, but low fit statistics
when cross‐validating our models, we would conclude our
model was over fit to the data and we would build simpler
models without interactions or quadratic functions.

RESULTS

Both the TBSTM and traditional landcover models exhibited
good statistical fit (Table 4) and were largely comparable in their
predictions of breeding areas for sage‐grouse (Figs. 3 and 4).
Model fit decreased slightly when we evaluated the k‐fold cross‐
validation data set for both the TBSTM and traditional land-
cover models; however, fit statistics still showed a good model fit
(Table 4). Our spatially explicit model generated from applying
the final TBSTM and Tradition landcover models both pre-
dicted the locations of known active leks across our study area
(Figs. 3 and 4).
Both models included 9 predictor variables with a quad-

ratic effect of winter precipitation as the most important
variable (Fig. 5, Table 2). Winter precipitation showed a
strong climatic envelope with sage‐grouse selecting for in-
termediate values (Figs. 6 and 7). The relative strength of
winter precipitation was twice as strong in the traditional
landcover model vs. the TBSTM model (Fig. 5). Variable
importance for both sagebrush and State A as well as conifer
were equivalent across models. Consistent with current

Table 4. Model fit statistics for the spatial prediction of sage‐grouse
breeding habitat using either the Threat‐based State and Transition Model
(TBSTM) or Traditional Landcover Model in eastern Oregon, USA,
2013–2017.

Correlation
coefficient

Area under
the curve

% Correctly
classified

TBSTM 0.70 0.91 83%
TBSTM Cross‐Validation 0.64 0.88 79%
Tradition landcover model 0.65 0.89 80%
Tradition landcover model
Cross‐Validation

0.59 0.86 76%
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knowledge, sage‐grouse selected for relatively flat (Tri1<26
TBSTM model, <37 traditional landcover model), sage-
brush dominated landscapes (>48% Sagebrush 560, or
>50% State A), with low tolerance for human disturbance
(<4% Crop 6440 or <6% NonHab_560) and even lower
tolerance for conifer encroachment (<3% PJ560 or <3%
Con560; Figs. 6 and 7).
The 560‐m scale was consistently the most important scale

in the TBSTM model, whereas the traditional landcover
model included a mix of 6440 m and 560m in the final
models (Figs. 6 and 7). Grass cover was an important var-
iable in both models, however LANDFIRE (2014) does not
differentiate between annual and perennial grass cover like
TBSTM habitat classification does. We found selection for
>8% perennial grass (State B) to be steep and asymptotic
(Fig. 6). Annual grass (State D) was not included in the
final model after model selection; however, it did show a
negative relationship when tested in univariate space.
LANDFIRE (2014) effectively combines State B (perennial
grass dominated) and State D (annual grass dominated)
habitats into a single habitat classification. The combined
response of grass6440 was positive, but the strength of se-
lection was not as steep compared to State B (Figs. 6 and 7).
The TBSTM was also able to compare the effects of a

sagebrush dominated cover with a perennial grass under-
story (State A) vs. a sagebrush dominated cover with an
annual grass understory (State C). We show State C habitat
exhibited higher variability in predicting grouse occurrence
than most retained TBSTM variables (p< 0.1) and ex-
hibited a flat selection function (0% State C probability=
50%, 100% State C probability= 52%; Fig. 6). State C
habitat also showed a negative response when tested in
univariate space.

DISCUSSION

We showed that our TBSTM model was equivalent to a
traditional landcover model in calculating the location of
sage‐grouse breeding habitats. We quantified a direct bio-
logical link between the TBSTM framework and sage‐grouse
occupancy and tested its predictive ability against known
methods that have been used widely for over two decades
(Boyce and McDonald 1999). Having a quantitative link
between the TBSTM and sage‐grouse occupancy allows in-
sight into the biological effectiveness of transitioning habitats
between TBSTM states as well as understanding how much
habitat needs to be treated within priority areas. Ultimately,
having a quantitative link between the TBSTM and
sage‐grouse occupancy allows for scenario planning before

Figure 3. Spatial prediction of sage‐grouse breeding habitat as defined by
our Threat‐based State and Transition Model in eastern Oregon, USA,
2013−2017. Our breeding habitat model provided the probability of each
30‐m grid cell containing sufficient habitat to support an occupied lek.
Probabilities between 0.00 and 0.20 are clear to allow spatial referencing of
prediction location to local readers. Lek data represent the average lek
counts between 2013 and 2017.

Figure 4. Spatial prediction of sage‐grouse breeding habitat as defined by
our traditional landcover model in eastern Oregon, USA, 2013−2017. Our
breeding habitat model provided the probability of each 30‐m grid cell
containing sufficient habitat to support an occupied lek. Probabilities
between 0.00 and 0.20 are clear to allow spatial referencing of prediction
location to local readers. Lek data represent the average lek counts between
2013 and 2017.
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conservation actions are implemented at landscape scales
(Doherty et al. 2018, Ricca et al. 2018).Consistent with past
and present research, landscape context within the TBSTM
framework is important to sage‐grouse (Doherty et al. 2010,
Ricca et al. 2018). We found strong positive selection for
both State A habitat (healthy sagebrush‐perennial bunchgrass
communities), and State B habitat (perennial bunchgrass‐
dominated communities), but neutral selection for State C
habitat (sagebrush with invasive annual grass, or fully de-
pleted understories). At a landscape scale, State A habitat will
not be occupied until roughly half of a 98.4 ha area is in State
A habitat. Further, State A habitat must also have low
amounts of threats such as non‐habitat 560 (<6%) or conifer
encroachment (<3%) within a 560m buffer (i.e., 98.4 ha
area; Fig. 6). We found little difference in response to conifer
metrics between the TBSTM models and the traditional
landcover models, with marked reduction in probability of
selection when conifer exceeded approximately 3% of the
landscape at the 560m scale within both models. Our
results are consistent with a growing body of research de-
scribing sage‐grouse response to conifer encroachment (e.g.,
Baruch‐Mordo et al. 2013, Coates et al. 2017).
The new information within our study (relative to extant

sage‐grouse literature) is the selection for perennial bunch
grasses (State B) and the lack of selection for sagebrush
with invasive annual grass, or fully depleted understories
(State C, annual grass threat model; Fig. 1). Recent re-
search showed the correlation between sage‐grouse nest
success and grass height was a product of a phenological
bias in many study areas (Gibson et al. 2016, Smith
et al. 2018, Smith et al. 2020). The phenological bias was

unfortunately posited by some to indicate that grass does
not matter for sage‐grouse. We show healthy perennial
bunchgrass communities are crucial to promoting sage‐
grouse habitat utilization at landscape scales (i.e., selection
for States A and B). The importance of perennial grasses is
also evident as an understory component within sagebrush
stands when comparing habitat selection for State A
(sagebrush with perennial bunch grass understory) vs.
State C (Sagebrush with annual grass understory; Fig. 6).
The disparity in selection for State A and State C habitat
evident in our modeling suggests that not all sagebrush
cover is created equal. Sage‐grouse may not actively avoid
areas impacted by invasive annual grasses when a mature
sagebrush over story is present (State C); however, these
systems are not actively selected in Oregon. Past work on
nesting sage‐grouse demonstrated avoidance of invasive
annual grasses at an individual level within local scales
(Kirol et al. 2012). Further, given the prevalence of annual
grasses in State C habitat, these areas are susceptible to
conversion to annual grass dominance (i.e. State D) fol-
lowing wildfire (Brooks et al. 2015). Invasive annual grass
monocultures showed a negative relationship when tested
in univariate space, but were not carried through in our
modeling effort. However, previous research has demon-
strated the negative impacts of invasive annual grass
monocultures on sage‐grouse population growth (Coates
et al. 2016). New maps of invasive annual grass occurrence
give insight into areas that may be predicted to be sage‐
grouse habitat, but are at risk of loss in the near future
(Boyte and Wylie 2016, Jones et al. 2018, Rigge
et al. 2019). Collectively, poor understory conditions

Figure 5. Variable importance as calculated by the change in area under the curve (AUC) when each predictor variable is systematically removed from the
final model. Panel A represents the importance of each retained variable in the final Threat‐based State and Transition Model (TBSTM) model. Panel B
represents the importance of each retained variable in the final traditional landcover model. The _SCALE suffix represents the percent of each habitat bin
within a 560‐m or 6440‐m buffer. For variables that were not resampled because of a high degree of spatial autocorrelation, the y‐axis defines full range of the
variables sampled by our response data. w.prcp, winter precipitation; NonHab, non‐habitat; tri1, terrain roughness index; tpi, multiscale topographic
position; pdsi, Palmer Drought Severity Index; tmin, average yearly minimum temp.
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at 560‐m and 6440‐m scales appear to have limited
sage‐grouse distributions across our study area, which is
especially concerning given the lack of effective tools available
to managers to address annual grass invasion currently.
Our analyses were a pilot effort and proved the concept of

the TBSTM framework in predicting sage‐grouse occur-
rence. Having a large pilot extent allowed insight into the
relative importance of different PACs. However, having one
global extent effectively averages out finer‐scale spatial het-
erogeneity within localized areas, resulting in a more gen-
eralized model (Boyce 2006). Aligning the scale of habitat
models with the scale of resource management can increase
the utility of the models for management decisions
(Hobbs 2003). Aligning scales is important because a gen-
eralized model could fit well for the larger study area, but
not predict well for certain localized areas. The spatial

predictions in the furthest northeast area (Baker PAC) were
not consistent with local knowledge of the area and the
threats identified within the TBSTM habitat classifications.
Difference in threats by PAC in Oregon indicated that we
may need to investigate smaller extents for certain PACs or
regional grouping of PACs within a Management Zone
(Stiver et al. 2006). Further, we believe validation of results
with sage‐grouse telemetry data in addition to the validation
of TBSTM models with our hold‐out test data set is pru-
dent. Regardless, the model fit statistics of our pilot effort
were good and clearly show the utility of the TBSTM
framework.
Addressing key ecological threats to persistence of sage‐

grouse and the sagebrush habitat they depend on requires
engagement and investment by a diversity of stakeholders,
the majority of whom are not professional plant ecologists,

Figure 6. Habitat selection response curves for each variable within the final Threat‐based State and Transition Model of sage‐grouse occurrence in eastern
Oregon, USA, 2013−2017. The y‐axis represents the probability of containing sufficient habitat to support an occupied lek. The x‐axis represents the percent
of each habitat bin within a 560‐m buffer. For variables that were not resampled because of a high degree of spatial autocorrelation, the x‐axis defines full
range of the variables sampled by our response data. w.prcp, winter precipitation; NonHab, non‐habitat; tri1, terrain roughness index; tpi, multiscale
topographic position; pdsi, Palmer Drought Severity Index.
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wildlife biologists, or land managers. State and Transition
Models provide a highly visual tool that can, in theory, be
used to engage such an audience. However, STMs are often
designed to convey a complexity of information that is not
appropriate for the more generalized understanding of a di-
versity of end‐users. To that end, the value of our simplified
TBSTM framework was initially recognized through its use
as an effective communication tool among conservation
stakeholders (Boyd et al. 2014b). The TBSTM framework
was used to assess habitat attributes on private land, com-
municate that information with landowners and other enti-
ties, and to help determine management direction. Partic-
ipants included plant ecologists, wildlife biologists, ranchers,
elected officials, business interests, science advisors, and
sportsmen (USFWS‐DOI 2014). The mutual understanding
developed within the TBSTM process allowed for the

development of sage‐grouse Candidate Conservation Agree-
ments with Assurances in Oregon between the USFWS and
5 local soil and water conservation districts who work to
enroll interested landowners. Candidate Conservation
Agreements with Assurances are voluntary conservation
agreements between non‐federal landowners and the Service,
wherein enrolled landowners implement conservation meas-
ures to address threats to candidate species. In return the
Service provides assurance to the landowner that no addi-
tional actions will be needed on enrolled lands, as well as
incidental take coverage for covered activities on enrolled
lands should the species be listed in the future.
The TBSTM framework has also been adapted to form the
backbone of the State of Oregon’s Sage‐Grouse Habitat
Quantification Tool for assessing development impacts to
habitat, and is being piloted by BLM to rapidly assess and

Figure 7. Habitat selection response curves for each variable within the final Traditional Landcover model of sage‐grouse occurrence in eastern Oregon,
USA, 2013−2017. The y‐axis represents the probability of containing sufficient habitat to support an occupied lek. The x‐axis represents the percent of each
landcover class within a 560‐m or 6440‐m buffer. For variables that were not resampled because of a high degree of spatial autocorrelation, the x‐axis defines
full range of the variables sampled by our response data. w.prcp, winter precipitation; tri1, terrain roughness index; tpi, multiscale topographic position; pdsi,
Palmer Drought Severity Index; tmin, average yearly minimum temp.
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prioritize ecological threats from annual grasses and conifer
encroachment in grazing allotments. The success of these
programs suggests that simple mental models, like the
TBSTMs, are effective aids to conservation planning, which
is consistent with expectations (Biggs et al. 2011, Tulloch
et al. 2015).

MANAGEMENT IMPLICATIONS

The benefit of a spatially explicit mental model is that it
helps promote communication among stakeholders, while
predicting where threats to sage‐grouse breeding habitat
are occurring and simultaneously highlighting how each
threat could be treated to transition habitats to State A.
This type of linkage between spatial orientation of threats
and structured decision‐making has been recognized as an
effective means to advance conservation outcomes. Given
finite resources for conservation investment, relative to the
scale of the primary ecological challenges, cost‐effective
deployment of resources will be critical for sage‐grouse and
sagebrush steppe conservation. Additionally, our TBSTM
framework includes management associated (e.g., grazing
modification) and ecosystem process (e.g., wildfire) tran-
sition factors that have the potential to move habitat from
current to desired states. These transition factors allow
managers to develop management alternatives to both
promote desired changes and manage against undesired
changes. From a conservation planning standpoint, quan-
titatively linking the TBSTM framework to sage‐grouse
allows us to not only spatially prioritize and define specific
habitat treatments in breeding habitat, but also to under-
stand how expected biological outcomes for sage‐grouse
differ between different conservation investment strategies.
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