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a b s t r a c t 

Wildfires are a growing management concern in western US rangelands, where invasive annual grasses

have altered fire regimes and contributed to an increased incidence of catastrophic large wildfires. Fire

activity in arid, nonforested ecosystems is thought to be largely controlled by interannual variation in

fuel amount, which in turn is controlled by antecedent weather. Thus, long-range forecasting of fire ac- 

tivity in rangelands should be feasible given annual estimates of fuel quantity. Using a 32-yr time series

of spatial data, we employed machine learning algorithms to predict the relative probability of large ( >

405 ha) wildfire in the Great Basin based on fine-scale annual and 16-d estimates of cover and produc- 

tion of vegetation functional groups, weather, and multitemporal scale drought indices. We evaluated the

predictive utility of these models with a leave-1-yr-out cross-validation, building spatial hindcasts of fire

probability for each year that we compared against actual footprints of large wildfires. Herbaceous above- 

ground biomass production, bare ground cover, and long-term drought indices were the most important

predictors of burning. Across 32 fire seasons, 88% of the area burned in large wildfires coincided with the

upper 3 deciles of predicted fire probabilities. At the scale of the Great Basin, several metrics of fire ac- 

tivity were moderately to strongly correlated with average fire probability, including total area burned in

large wildfires, number of large wildfires, and maximum fire size. Our findings show that recent years of

exceptional fire activity in the Great Basin were predictable based on antecedent weather-driven growth

of fine fuels and reveal a significant increasing trend in fire probability over the past 3 decades driven by

widespread changes in fine fuel characteristics.

© 2022 The Author(s). Published by Elsevier Inc. on behalf of The Society for Range Management.

This is an open access article under the CC BY-NC-ND license

( http://creativecommons.org/licenses/by-nc-nd/4.0/ )
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Shifting fire regimes in the western United States present es- 

alating management challenges. Though a century of aggressive 

re suppression has resulted in an overall deficit of fire ( Marlon

t al. 2012 ), the annual area burned and incidence of large wild-
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res ( > 405 ha) have risen in recent decades ( Dennison et al. 2014 ;

esterling 2016 ; Iglesias et al. 2022 ). Humans have increased ig-

itions ( Balch et al. 2017 ), altered fuel characteristics ( Noss et al.

006 ; Balch et al. 2013 ; Fusco et al. 2019 ), and otherwise mod-

fied fire regimes of many western ecosystems, with impacts in- 

luding permanent vegetation state transitions ( D’Antonio and Vi- 

ousek 1992 ; Coop et al. 2020 ) and degradation or loss of habitat

or sensitive species ( Rockweit et al. 2017 ; O’Neil et al. 2020 ). Re-

ponding to these trends and threats, the US federal fire suppres-

ion budget has grown more than sixfold in the past 3 decades,

rom an average of $370M ·yr −1 from 1985 to 1989 to $2.38B ·yr −1 

rom 2016 to 2020 ( National Interagency Fire Center 2021 ). Even

o, widespread and synchronous fire activity across western North 

merica increasingly exceeds fire-suppression capacity ( Podur and 

otton 2010 ; Abatzoglou et al. 2021 ), contributing to increased in-
ange Management. This is an open access article under the CC BY-NC-ND license
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a  
idence of wildfire disasters and underscoring the need for accu-

ate, long-range forecasts to guide management and allocation of

re-suppression resources. 

Although forest fires have historically been the focal point of

re management and research, increasing wildfire in nonforested

cosystems across western North America (hereafter rangelands) is

 growing concern. The Great Basin, a cold desert covering most

f Nevada and parts of California, Idaho, Oregon, and Utah, has

ecently experienced particularly damaging fire seasons fueled in

art by highly flammable exotic annual grasses such as cheat-

rass ( Bromus tectorum L.; Balch et al. 2013 ; Fusco et al. 2019 ).

ative vegetation communities of the Great Basin, codominated

y perennial grasses and nonresprouting shrubs such as sagebrush

 Artemisia spp.), evolved with infrequent fire and can take many

ecades to recover after burning ( Knutson et al. 2014 ; Shriver et al.

018 ; Bates et al. 2020 ). Larger and more frequent wildfires there-

ore threaten to catalyze widespread, permanent shifts to vegeta-

ion communities devoid of shrubs and dominated by exotic an-

ual grasses, with negative consequences for rural communities

nd shrubland obligate species ( Knick et al. 2003 ; Coates et al.

016 ; O’Neil et al. 2020 ). 

Spatial tools quantifying wildfire hazard fall into two broad cat-

gories: static land cover- and climate-based maps depicting the

ong-term average annual probability of burning (e.g., Short et al.

020 ) and short-term (daily to weekly) indices based on rapidly

hanging variables such as fuel moisture, humidity, wind speed,

nd temperature (e.g., the Keetch-Byram Drought Index [Keetch

nd Byram 1968] and the various indices under the National Fire

anger Rating System [ Deeming et al. 1972 ; Burgan et al. 1998 ]).

hese tools reflect a historical focus on “flammability-limited”

orested ecosystems, where fuel quantity changes little from 1 yr

o the next but fire danger can change rapidly within a season as

he moisture content of fuels responds to atmospheric conditions

 Krawchuk and Moritz 2011 ; Abatzoglou and Kolden 2013 ). 

Semiarid and arid grasslands and shrublands, in contrast, are

onsidered “fuel limited” in the sense that burnable biomass can

ary considerably from year to year while fuel moisture is rarely

imiting ( Krawchuk and Moritz 2011 ; Abatzoglou and Kolden 2013 ).

n these ecosystems, fire activity is strongly correlated with an-

ecedent (i.e., before the onset of the fire season) precipitation and

uel growth and relatively weakly related to weather during the

re season ( Westerling et al. 20 02 , 20 03 ; Brown et al. 20 05 ; Littell

t al. 2009 ; Abatzoglou et al. 2018 ). Consequently, fire activity at

he seasonal scale may be predictable further in advance in range-

ands than forested ecosystems. 

Precipitation and drought indices have long been employed as

orrelates of fine fuel growth for predicting fire activity in range-

ands. Outlooks distributed months in advance of the fire season,

or example, rely heavily on long-term drought indices (e.g., Palmer

rought Severity Index) to infer the relative quantity of fine fu-

ls. Recent work has strengthened and refined the links between

recipitation and fine fuels in Great Basin shrublands. Pilliod et al.

2017) found precipitation had complex, multiyear lagged effects

n fuel accumulation that differed among plant functional groups

nd concluded that native perennial bunchgrass production in the

revious year, as well as litter accumulated over 1–3 yrs’ produc-

ion of exotic grasses and forbs, were among the main drivers

f the number of large fires and total burned area in the Great

asin. Using only antecedent precipitation variables, they devel-

ped annual fire risk maps predictive of the distribution of large

res across the Great Basin ( Pilliod et al. 2017 ). 

Precipitation and drought are, however, coarse proxies for

ne fuel accumulation. Direct, remotely sensed estimates of veg-

tation cover and/or production may better account for fine-

rained variation induced by factors such as topography and

oil, invasion by exotic annual grasses, and legacies of manage-
ent and disturbance. For example, Moderate Resolution Imag-

ng Spectroradiometer −derived estimates of production revealed

igh intra-annual and interannual variation in fuels driven by the

ombined effects of weather and disturbance history in northern

reat Basin shrublands ( Li et al. 2020 ). Despite its potential util-

ty, the application of remotely sensed data to wildfire forecasting

n rangelands has been hampered by a lack of readily available,

imely data quantifying dynamic and spatially variable rangeland

uels at ecoregional and larger extents. 

Recently, datasets providing high-resolution, consistent, annual 

stimates of rangeland vegetation cover and production with ex-

ensive temporal and geographic coverage have been developed

rom long-term satellite imagery records (e.g., Jones et al. 2018 ,

hang et al. 2019 , Rigge et al. 2020 ). These dynamic vegetation

atasets have been rapidly adopted for quantifying long-term vege-

ation trends ( Robinson et al. 2019 ; Fogarty et al. 2020 ; Rigge et al.

021 ), wildlife habitat ( Donovan et al. 2021 ; Olsen et al. 2021 ;

illiod et al. 2022 ), spread of invasive species ( Pastick et al. 2021 ;

mith et al. 2022 ), and outcomes of management ( Bestelmeyer

t al. 2021 ; Fick et al. 2022 ). To our knowledge, however, they have

et to be used in a wildland fire preparedness context. Our over-

rching objective was to explore the utility of these data for quan-

ifying rangeland fuels and improving wildfire preparedness in the

reat Basin. 

Specifically, we use vegetation cover and production data from

he Rangeland Analysis Platform (hereafter RAP), a suite of dy-

amic rangeland vegetation datasets based on the extensive Land-

at imagery record and decades of intensive ground sampling

 Jones et al. 2018 ). RAP provides annual estimates of cover of

angeland plant functional types (annual forbs and grasses, peren-

ial forbs and grasses, shrubs, and trees), litter, and bare ground

ver the coterminous United States from 1984–present at a 30-

 resolution ( Allred et al. 2021 ). In addition to cover, RAP pro-

ides annual production (kg ·ha −1 ) estimates for all plant functional

ypes and 16-d production (kg ·ha −1 ·16 d 

−1 ) estimates for herba-

eous plant functional types ( Jones et al. 2021 ). 

Our aim was to use vegetation cover and production data from

AP in conjunction with gridded weather, drought, and climate

ata to produce annual, high-resolution (120 m) forecasts of the

elative probability of burning in a large ( > 405 ha) wildfire avail-

ble well before the onset of the fire season and to quantify the

kill of these forecasts using a hindcasting (i.e., forecasts for past

ears) approach. Numerous factors, many unrelated to fuels and

ubject to change over time (e.g., ignition probability), influence

here and when large wildfires occur ( Balch et al. 2018 ). Our ob-

ective was not to account for all these factors, but rather to de-

elop a fuels-based index proportional to the annual probability of

urning. An additional objective was to explore the trade-off be-

ween forecast lead-time and accuracy. We anticipated that short-

erm drought indices and herbaceous vegetation production in the

pring would become increasingly informative as the forecast date

pproached the onset of the fire season, and therefore forecasts

ade earlier in the year, when they would potentially be more

seful for planning, would be less accurate than forecasts made

ater in the spring. Finally, to explore the utility of our approach

elative to currently available spatial fire risk products, we compare

he skill of our hindcasts to a static burn probability map widely

sed by land management agencies ( Short et al. 2020 ) in predict-

ng the spatial patterns of large wildfires over the past 3 decades. 

ethods 

tudy area and period 

We focused our analysis on rangelands as defined by Reeves

nd Mitchell (2011) in the Great Basin. Environmental Protection
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gency Level III ecoregions ( Omernik and Griffith 2014 ) defined

he boundaries of our study area, which included the Central Basin

nd Range, Northern Basin and Range, and Snake River Plain ecore-

ions. Data availability constrained our analysis to fire seasons 

rom 1988 to 2019. 

ata sources 

Annual estimates of vegetation cover (percent) and above- 

round biomass production (kg ·ha −1 ), as well as short-term esti-

ates of herbaceous aboveground biomass production (kg ·ha −1 ·16 

 

−1 ), were derived from the RAP ( Jones et al. 2018 , 2021 ; Allred

t al. 2021 ). Annual cover and production, which are updated each

ear in early spring with estimates for the previous year’s grow-

ng season, were included at 1- and 2-yr lags (i.e., we used cover

nd production in yr t -2 and t -1 to predict the occurrence of fire

n year t ). The short-term (16-d) herbaceous production dataset 

s updated in near real time as provisional Landsat images are

ade available. It was used to quantify cumulative growth of fine

uels in year t from January 1 until the date the forecast was

ade. 

Water availability is a dominant control on primary produc- 

ion in most terrestrial ecosystems ( Churkina and Running 1998 ),

nd precipitation is the primary driver of interannual variation 

n herbaceous vegetation cover in Great Basin rangelands ( Pilliod

t al. 2017 ). We therefore included precipitation and drought vari-

bles derived from the Gridded Surface Meteorological dataset 

gridMET; Abatzoglou 2013 ) as indicators of resource availability 

or vegetation growth at multiple temporal scales. Precipitation 

as quantified over the preceding year (pr_1y) and over the wa-

er year to date (pr_wy; October 1 of the previous year through the

orecast date). Although the Palmer Drought Severity Index ( Palmer

965 ) has historically seen wide use in fire forecasting ( Westerling

t al. 20 02 , 20 03 ), newer drought indices have been developed that

llow drought to be quantified over various user-specified tem- 

oral scales. We explored two of these indices, the standardized

recipitation-evapotranspiration index (SPEI; Vicente-Serrano et al. 

010 ) and evaporative demand drought index (EDDI; Hobbins et al.

016 ; McEvoy et al. 2016 ), calculated at 30 d, 90 d, 180 d, 270

, 1 yr, 2 yr, and 5 yr temporal scales. The SPEI and EDDI both

ange from approximately −2 to 2, but their interpretations are 

pposite: Negative values of SPEI indicate drought, whereas neg- 

tive values of EDDI indicate wetter conditions (less evaporative 

emand). These indices are updated every 5 d and are available

or the period 1980–present. 

Low temperature limits vegetation growth during a signifi- 

ant portion of the year in the Great Basin. With adequate mois-

ure, more rapid spring warming should facilitate faster vegetation 

rowth and greater accumulation of fine fuels. We therefore cal- 

ulated accumulated growing degree days (gdd) from January 1 to 

he date of the forecast using daily minimum and maximum tem-

eratures from gridMET. 

Climate may directly or indirectly influence the annual proba- 

ility of burning. A direct effect might include variation in the an-

ual number of days with weather conducive to wildfire ignition 

nd spread. Climate may also indirectly affect annual probability of 

re (e.g., via vegetation community composition). Vegetation com- 

unities occupying different biophysical settings are likely to dif- 

er in their responses to precipitation, temperature, and drought. 

o account for this spatial climate variation, we included mean an-

ual temperature and mean annual precipitation from the PRISM 

0-yr (1991–2020) normal dataset ( Daly et al. 2015 ). 

We derived the categorical response, burned ( y = 1) or un-

urned ( y = 0) from the Monitoring Trends in Burn Severity dataset

MTBS; Eidenshink et al. 2007 ). MTBS maps all fires > 405 ha ( > 1

 0 0 ac) since 1984 across all land ownerships. Unburned inclusions
ften occur within MTBS mapped fire perimeters ( Kolden et al.

012 ), introducing opportunity for class label errors. Therefore, we 

sed the MTBS thematic burn severity raster dataset to assign each

ixel to the burned or unburned class. Thematic burn severity 

lasses 1–5 indicate increasing burn severity. We assigned all pix- 

ls in burn severity class 1 (low severity/unburned) or outside fire

erimeters to the unburned class ( y = 0) and all pixels in classes

–5 to the burned class ( y = 1). Class 6 represents pixels of un-

nown burn severity within fire perimeters. We assumed pixels in 

lass 6 were assigned this class due to imagery issues (e.g., clouds

r shadows), not because they were unburnable land cover types 

uch as large water bodies; unburnable land cover types were al-

eady masked from our analysis. Therefore, we assigned pixels in 

lass 6 to the burned class ( y = 1). 

Because MTBS only maps fires > 405 ha, some sampled pixels

ssigned to the unburned class may have, in fact, burned in small

ildfires. However, using data from the US Forest Service Fire Pro-

ram Analysis Fire Occurrence dataset ( Short 2021 ), we estimated

hat fires < 405 ha affected, on average, only ∼0.05% of the study

rea not burned in MTBS-mapped fires each year. We therefore 

ssumed the level of contamination of the unburned sample was 

egligible. All data were accessed via Google Earth Engine (GEE; 

orelick et al. 2017 ), and analyses were conducted using the GEE

ode editor and R (version 4.0; R Development Core Team 2021 ). 

odeling approach 

We used random forests (RFs; Breiman 2001 ) to predict the re-

ponse variable (burned or unburned). RFs are widely used for pre-

iction in ecology because they are straightforward to fit, require 

ittle tuning, and readily accommodate nonlinear relationships and 

nteractions among predictors ( Cutler et al. 2007 ). Because they

re based on decision trees, predictive accuracy of RF is robust to

ollinearity among predictors. Importantly for our application, RFs 

enerally perform well at predicting probabilities ( Niculescu-Mizil 

nd Caruana 2005 ). 

Like many classification algorithms, however, RF performance is 

egraded when training data are highly imbalanced among classes 

 Sage et al. 2020 ). Because only a small fraction of the study area

urns annually, a simple random sample would be dominated by 

nburned pixels. We therefore stratified by outcome to train the 

odel on equal numbers of burned and unburned pixels. This 

ampling scheme results in pixel-level model predictions, ranging 

rom 0 to 1, that do not represent absolute probabilities of burn-

ng. However, our goal was not to estimate absolute probabilities

f burning, but rather to quantify the relative probability of burn-

ng in a large wildfire based on fuel characteristics. We define this

uantity p at a given pixel with observed predictors x , p = P (y =
 | x ) . Estimates of probabilities ˆ p were derived from RF classifica-

ion models using tree vote aggregation ( Sage et al. 2020 ). Each

ree t predicts the most probable class, ˆ y t ∈ { 0 , 1 } (‘casts a vote’),

nd ˆ p is derived by averaging votes across T trees, ˆ p = 

1 
T 

∑ T 
t=1 ˆ y t . 

orkflow 

Our goal was to develop and tune an RF model that can be

pdated annually to produce a prefire season forecast using data 

ampled from the extensive historical record available in GEE. Al- 

hough GEE is a powerful platform for accessing, processing, and 

ampling data; fitting a model; and mapping predictions across 

arge areas, it has limited built-in statistical functions. Therefore, 

yperparameter tuning and statistical evaluation of hindcasts were 

ccomplished outside of GEE. The basic outline of our workflow is

hown in Figure 1 . 
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Figure 1. Workflow used to develop and evaluate dynamic spatial wildfire forecasts based on antecedent cover and production of vegetation, multitemporal scale drought 

indices, and climate variables for the Great Basin, United States. 

Table 1 

Predictors used in random forest models of large rangeland wildfire occurrence in the Great Basin, USA, 1988–2019. 

Predictor Abbreviation 1 Native resolution 2 Temporal period/scale Source 3 

Annual forb and grass cover AFGC 30 m Annual, lag-1 and lag-2 1 

Perennial forb and grass cover PFGC 30 m Annual, lag-1 and lag-2 1 

Shrub cover SHR 30 m Annual, lag-1 1 

Litter cover LTR 30 m Annual, lag-1 and lag-2 1 

Bare ground cover BG 30 m Annual, lag-1 and lag-2 1 

Tree cover TREE 30 m Annual, lag-1 1 

Annual forb and grass aboveground biomass production afgAGB 30 m Annual, lag-1 and lag-2 2 

Perennial forb and grass aboveground biomass production pfgAGB 30 m Annual, lag-1 and lag-2 2 

Herbaceous aboveground biomass production herbAGB 30 m Annual, lag-1 and lag-2 2 

Shrub net primary production shrNPP 30 m Annual, lag-1 and lag-2 2 

Cumulative 16-d annual forb and grass aboveground biomass production afgAGB_ytd 30 m Jan 1-forecast DOY 2 

Cumulative 16-d perennial forb and grass aboveground biomass production pfgAGB_ytd 30 m Jan 1-forecast DOY 2 

Standardized Precipitation-Evapotranspiration Index SPEI 4.6 km 30 d, 90 d, 180 d, 270 d, 1 yr, 2 yr 3 

Evaporative Demand Drought Index EDDI 4.6 km 30 d, 90 d, 180 d, 270 d, 1 yr, 2 yr 3 

Precipitation pr 4.6 km 1 yr and water year to date 4 

Cumulative growing degree days gdd 4.6 km Jan 1-forecast DOY 4 

Mean annual temperature bio01 800 m Mean, 1991–2020 5 

Mean annual precipitation bio12 800 m Mean, 1991–2020 5 

1 Suffixes indicate temporal lags (_l1, 1-yr lag; _l2, 2-yr lag) or scales (_ydt, year to date [January 1 to forecast date]; _wy, water year to date [October 1 of previous year 

through forecast date]; _30d, 30 d preceding forecast date; _1y, 1 yr preceding forecast date, and so on). 
2 All data were resampled to a common 120-m resolution for model fitting and prediction. 
3 Sources: 1: Rangeland Analysis Platform (RAP) fractional cover dataset ( Jones et al. 2018 ; Allred et al. 2021 ); 2: RAP annual and 16-day production dataset ( Jones et al. 

2021 ); 3: gridMET Drought Indices; University of California Merced ( Abatzoglou 2013 ); 4: gridMET; University of California Merced ( Abatzoglou 2013 ); 5: PRISM 30-yr 

(1991–2020) climate normals ( Daly et al. 2015 ). 
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. Sampling 

We drew a sample of n = 10 0 0 0 pixels (5 0 0 0 each burned

nd unburned) for model tuning and testing. Native resolution

f response and predictor datasets varied from 30 m to 4.6 km

 Table 1 ); we chose to resample all data to a common 120-m reso-

ution for model fitting and prediction. Training data were sampled

andomly in time and space to reduce spatial and temporal auto-

orrelation among training data. This is particularly important for
odeling a process like fire; in any given fire season, the outcomes

f spatially adjacent pixels are strongly interdependent. Our sam-

ling schema ensured only a single year’s observation, randomly

elected from the 32-yr time series, could be included at any given

patial coordinates. Thus, even when sampled pixels were in close

patial proximity, it was unlikely the observations represented by

hose samples were proximal in time, and vice versa. This sam-

le size was chosen to balance predictive accuracy and process-

ng time; in preliminary analysis, the incremental improvements in
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ccuracy yielded by larger samples did not justify the increase in

rocessing time. This was likely related to the fact that only 2 201

arge wildfires overlayed our study area; additional burned samples 

ould largely be drawn from fires already sampled and, therefore, 

ield diminishing returns in terms of new information. 

. Dividing into training and testing data 

We split the sample into a tuning set ( ∼80%) and a testing set

 ∼20%) by randomly selecting 6 of the 32 yr and withholding all

amples from those years to evaluate the final model. 

. Tuning via cross-validation 

RF defaults are to build each tree on a bootstrap sample of the

raining data (sampling fraction = 1, sampled with replacement) 

nd consider a random selection of m = 

√ 

k of the k available pre-

ictors at each split ( m try = 

√ 

k ; Breiman 2001 ). We performed a

rid search to select the optimal combination of m try and sam-

ling fraction for our application. We considered values of m try 

rom 

√ 

k 
2 to k 

3 and trees grown on subsamples (without replace- 

ent) of the training data ranging in size from 0.1 n to 0.5 n or the

efault bootstrap sample (with replacement) of size n ( Martínez-

uñoz and Suárez 2010 ). We held the minimum node size and

aximum number of nodes constant at values (1 and unlimited, 

espectively) recommended for probability estimation using tree 

ote aggregation ( Sage et al. 2020 ). RF models were fit with the

anger function in the “ranger” package (version 0.12.1; Wright 

nd Ziegler 2017 ) in R. All forests were grown to 1 001 trees. 

We used cross-validation to assess each combination of tuning 

arameters. Cross-validation folds were defined using the natural 

rouping structure of the data; 1 yr’s samples were withheld at

 time for prediction. When accurate class probabilities (e.g., rela- 

ive probability of burning) are the primary objective, the log-loss 

s more informative than threshold-based metrics such as percent 

orrectly classified, area under the receiver operating characteristic 

urve (AUC), or kappa. For a predicted fire probability ˆ p and ob-

erved outcome y , the log-loss is defined as: 

 log 

(
y, ˆ p 

)
= −y log 

(
ˆ p 
)

+ ( 1 − y ) log 
(
1 − ˆ p 

)
(1) 

The equation can be modified to place larger penalties on “bad”

robabilities (i.e., outcomes predicted to be highly improbable) for 

 particular class by introducing a weighting parameter, α: 

 

∗
log 

(
y, ˆ p | α)

= −αy log 
(

ˆ p 
)

+ ( 1 − α) ( 1 − y ) log 
(
1 − ˆ p 

)
(2) 

For our purposes, a pixel may remain unburned despite suit- 

ble fuels for numerous reasons including lack of ignition, success- 

ul fire suppression, or unfavorable weather. Moreover, the cost of 

nderestimating burn probabilities among areas that do, in fact, 

urn (i.e., a false negative signal) is potentially greater than the

ost of overestimating probabilities of areas that remain unburned 

i.e., a false-positive signal). We therefore scored predictions us- 

ng the weighted log-loss, setting α = 

10 
11 to weight predictions of 

urned pixels 10 × higher than predictions of unburned pixels. We 

elected as our final model the set of hyperparameters that mini-

ized the global weighted log-loss across the tuning set. 

. Pixel-level model evaluation 

Samples from the 6 yr withheld from model tuning were used

o evaluate accuracy of probabilities from the tuned model at the

20-m pixel level. We report the log-loss and the more familiar

lassification accuracy metrics, kappa and AUC. 
. Hindcasting 

To evaluate model predictions at a practical spatial scale and 

rovide information about the predictive utility that could be ex- 

ected of future forecasts beyond what is provided by standard 

odel performance metrics, we conducted a secondary valida- 

ion based on hindcasts developed for each yr from 1988 to 2019

 Fig. 2 ). As in our cross-validation model tuning procedure, hind-

asts were constructed by withholding 1 yr’s data at a time, fit-

ing the model to samples drawn from all remaining 31 yr, and

hen mapping predicted probabilities for the withheld year. These 

2 hindcasts were then evaluated against actual burn footprints. 

. Hindcast evaluation 

We evaluated hindcasts by 1) converting continuous pixel- 

evel estimates, ˆ p , to 10 decile bins, 2) overlaying the binary

urned/unburned maps derived from the MTBS thematic burn 

everity dataset (see Data sources, earlier), and 3) calculating i) to-

al area (roughly equal across bins) and ii) burned area in each bin.

e then derived the proportion of the total area in each bin that

urned. This proportion should increase monotonically from the 

owest to highest bin if model fit is adequate. We also compared

erformance among forecast dates using a precision-recall curve 

ased on the same aggregate decile bin data. Considering the lower

ound of each bin sequentially as prediction thresholds, precision 

as approximated by the burned area for which ˆ p > threshold di- 

ided by the total area for which ˆ p > threshold. Recall was approx-

mated by the burned area for which ˆ p > threshold divided by the

otal burned area across bins. Higher precision for a given recall

ndicates higher skill in discriminating between pixels likely and 

nlikely to burn. 

To evaluate correspondence between hindcasts and fire activity 

t the scale of the Great Basin over time, we aggregated predicted

re probability across the study area (mean) and calculated Pear- 

on correlations between annual mean predicted fire probabilities 

nd several annual metrics of fire season activity. These included 

otal area burned in large wildfires, number of large wildfires, 

aximum fire size, and season length (number of days between 

gnition date of the first and last large wildfires). Total area burned

as calculated using the MTBS thematic burn severity dataset to 

ccount for unburned inclusions within fire perimeters, while all 

ther metrics were derived from the MTBS fire perimeter dataset. 

ighly skewed variables (total area burned, number of fires, max 

re size) were either square-root (areas) or log (number of fires)

ransformed. 

orecast date 

To explore the trade-off between forecast lead time and accu- 

acy, we tested forecasts made every 16 d from January 1 to May

5, aligning with the schedule of 16-d Normalized Difference Veg- 

tation Index composites used to produce NPP estimates ( Jones 

t al. 2021 ). For reference, between 1988 and 2019 the median ig-

ition date of the first large wildfire in the Great Basin was March

0, and 95% of large wildfires started on or after June 12. Vari-

bles quantifying cumulative growing degree days and vegetation 

roduction in the current year (gdd, afgAGB_ytd, and pfgAGB_ytd) 

ere omitted for January 1 forecasts. We repeated steps 1–6 for

ach forecast date and reported cross-validation metrics for each 

ate. 

ariable importance and effects 

We computed the permutation-based mean decrease in accu- 

acy (hereafter permutation importance) and conditional impor- 
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Figure 2. Hindcasts of fire probability in the Great Basin, United States, predicted by random forest models using antecedent cover and production of vegetation, multitem- 

poral scale drought indices, and climate variables. Perimeters of wildfires > 405 ha are depicted in purple. A leave-one-out approach was used to generate predictions for 

each year, with that year’s data withheld from model training. The 9 most recent yr with complete Monitoring Trends in Burn Severity fire perimeter data are shown. An 

animation of the full time series of hindcasts, 1988–2019, is available online ( https://rangelands.app/great- basin- fire/ ). 
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ance to assess the relative importance of variables. Although per-

utation importance is an established method of ranking variables

rom RF models, it can be biased in the presence of highly corre-

ated predictors ( Strobl et al. 2007 ; Nicodemus and Malley 2009 ).

he predictors we used were characterized by many high pairwise

orrelations. The conditional importance ( Strobl et al. 20 07 , 20 08 )

as developed as a less biased metric of variable importance un-

er strong multicollinearity and other conditions that distort tra-

itional variable importance metrics. We therefore calculated the

onditional importance from conditional inference forests fit with

he “party” package (version 1.3; Hothorn et al. 2006 ; Strobl et al.

0 07 , 20 08 ) in R and compared importance rankings on the basis
f these two metrics. We also provide partial dependence plots to

isualize the effects of individual predictors on fire probability. Par-

ial dependence plots were produced for the 12 predictors ranking

ighest in conditional importance. 

esults 

odel tuning and evaluation 

For all forecast dates, models constructed by building trees

ith a small subset of the training data sampled without re-

lacement (sample fraction = 0.1) minimized the log-loss ( Table 2 ).

https://rangelands.app/great-basin-fire/
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Table 2 

Model tuning and pixel-level evaluation of fuel-based rangeland fire probability models for the Great Basin using drought indices and concurrent year’s cumulative pre- 

cipitation, growing degree days, vegetation production at the indicated forecast date (DOY = day of year), and vegetation cover and annual production from the past 2 yr. 

Performance in cross-validation and on independent testing data is shown for the optimal combination of random forest hyperparameters for each forecast date. 

Forecast DOY m try 
1 Sample fraction 2 Cross-validation Independent testing set 

AUC kappa L ∗ log AUC kappa L ∗ log 

1 5 0.1 0.851 0.524 0.27 0.868 0.552 0.33 

17 4 0.1 0.849 0.525 0.27 0.870 0.522 0.34 

33 4 0.1 0.853 0.521 0.27 0.868 0.565 0.32 

49 6 0.1 0.847 0.510 0.27 0.871 0.575 0.32 

65 4 0.1 0.851 0.521 0.27 0.872 0.570 0.33 

81 6 0.1 0.856 0.535 0.26 0.873 0.582 0.32 

97 5 0.1 0.846 0.518 0.27 0.866 0.548 0.34 

113 5 0.1 0.841 0.483 0.28 0.863 0.545 0.33 

129 5 0.1 0.851 0.518 0.27 0.870 0.554 0.34 

145 5 0.1 0.855 0.525 0.27 0.862 0.538 0.34 

AUC indicates area under the receiver operating characteristic curve. 
1 The RF hyperparameter m try controls the number of randomly selected predictors to consider at each split for building trees. 
2 Sample fraction refers to the fraction of training cases subsampled to train each tree. 

Figure 3. Validation of fuel-based rangeland fire probability hindcasts (“Dynamic”) using weather and vegetation production data through the indicated forecast date. Con- 

tinuous predictions of large fire probability ( ̂ p ) were divided into 10 equal-area bins. A, Proportion of the total mapped area in each bin that burned in large wildfires across 

years (1988–2019). B, Precision-recall tradeoff for each forecast date (see methods for calculations). Performance of a widely used static burn probability map (“Static”) is 

shown for comparison (dashed black line). 
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ross-validation performance was less sensitive to m try , but values

ear random forest defaults ( 
√ 

k ≈ 6 ) tended to perform well (see

able 2 ). Pixel-level model performance on the withheld inde- 

endent testing dataset was similar to performance in cross- 

alidation, with threshold-based performance metrics (i.e., AUC, 

appa) slightly improved, but log-loss slightly higher (see Table 2 ).

orecast date 

At the pixel level, accuracy was less sensitive to forecast date

han expected (see Table 2 ). In cross-validation, the log-loss was

inimized on the March 22 (DOY 81) forecast date, but Jan-

ary 1 and May 25 (DOY 145) forecasts performed similarly (see

able 2 ). We therefore selected three forecast dates—one early (Jan-

ary 1), one middle (March 22) and one late (May 25)—for evalu-

ting hindcast performance and variable importance. 

indcast evaluation 

Proportional area burned increased monotonically with in- 

reasing predicted fire probability for all three forecast dates 

 Fig. 3 A). This contrasted with the static burn probability map

 Short et al. 2020 ); although proportional burned area increased

teadily through the eighth decile bin, roughly equal proportions 

f the upper three decile bins burned (see Fig. 3 A). 
Precision-recall curves revealed that hindcast skill increased 

nly slightly from the earliest to the latest forecast date (see

ig. 3 B). Dynamic hindcasts consistently outperformed the static 

urn probabilities (see Fig. 3 B). The upper decile of probabilities

rom the January 1 hindcasts, for example, captured 43.8% of the

otal burned area, while the upper decile of probabilities from the

tatic map captured only 18.5% of the total burned area. The upper

hree deciles of January 1 hindcasts captured approximately 88% 

f the cumulative burned footprint, compared with only 54% cap- 

ured by the upper three deciles of static burn probabilities. In the

pper decile, 3.2% of the area from January 1 hindcasts burned,

hile only 1.3% of the upper decile of static burn probabilities

urned. 

Across years, mean predicted fire probability was strongly posi- 

ively correlated ( P > 0.6) with total burned area and number of

arge fires and moderately positively correlated (0.6 > P > 0.4)

ith maximum fire size and fire season length ( Fig. 4 ). These cor-

elations varied little across the three examined forecast dates, al- 

hough correlations were slightly stronger for the two earlier dates 

January 1 and March 22). 

ariable importance 

Permutation importance and conditional importance metrics 

greed on the most important categories of variables ( Fig. 5 ), in-
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Figure 4. Metrics of annual wildfire activity in the Great Basin, United States, 1988–2019, in relation to mean predicted fire probability. Mean fire probability was moderately 

to strongly correlated with the number of large wildfires, total area burned, and maximum fire size and weakly correlated with fire season length. Mean predicted fire 

probability was calculated from January 1 (left column), March 22 (middle column), and May 25 (right column) forecast dates. Fitted lines are from least squares regressions. 
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luding past years’ herbaceous vegetation cover and production,

are ground cover, and drought indices measured at 1- and 2-

r temporal scales. The highest-ranking vegetation variable was

otal herbaceous production in the previous year for both met-

ics, with the exception of conditional variable importance for the
ay 25 forecast. The 2-yr SPEI was also highly important, rank-

ng in the top three variables for both metrics across forecast

ates. Both metrics also agreed on the relatively low importance

f shrub and litter cover, mean annual temperature (bio01), short-

erm drought indices (e.g., spei_30d and eddi_30d), and growing
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Figure 5. Importance of variables used to predict fire probability in the Great Basin, United States, 1988–2019, corresponding to three forecast lead times (forecast date). 

The commonly used permutation variable importance (left) yielded rankings that were generally similar to the conditional variable importance (right), which accounts for 

correlations among predictors. Antecedent production of herbaceous vegetation, long-term (1- to 2-yr) drought indices, and bare ground were the most important predictors 

regardless of importance metric. Variable suffixes indicate temporal lags (_l1 = 1-yr lag, _l2 = 2-yr lag) or scales (_ydt = year to date [January 1 to forecast date], _wy = water 

year to date [October 1 of previous year through forecast date], _30d = 30 d preceding forecast date, _1y = 1 yr preceding forecast date, and so on). 
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egree day accumulation (gdd). Lag-2 vegetation variables ranked 

ower in importance than lag-1 variables. A notable disagreement 

etween permutation and conditional importance rankings was 

or tree cover; permutation importance placed tree cover as the 

owest-ranked variable, while conditional importance ranked tree 

over near the middle. However, because of the highly skewed dis-

ribution, even the conditional importance for tree cover was quite 

ow relative to variables such as total herbaceous production and 

-yr SPEI. 

As anticipated, cumulative 16-d production of perennial and 

nnual herbaceous vegetation (pfgAGB_ytd and afgAGB_ytd) were 

ore important for forecasts made later in the spring (i.e., May

5) than those made earlier (i.e., March 22). In contrast, 1-yr SPEI

as highly important for January 1 forecasts but progressively di- 

inished in importance for later forecast dates (see Fig. 5 ). 

iscussion 

Our analyses demonstrate how high-resolution, dynamic, re- 

otely sensed vegetation data can be used to map fuels conducive

o wildfires months in advance of the fire season in Great Basin

angelands. Annual hindcasts were predictive of both spatial and 

nterannual patterns in fire activity over the past 3 decades, pro-

iding improved skill over static burn probabilities. Because the 

ost important predictors were the previous year’s herbaceous 

egetation production and long-term (1- to 2-yr scale) drought in- 

ices, accuracy was less sensitive to forecast lead time than antic-

pated. Thus, forecasts providing timely and accurate information 

bout the spatial distribution of fuels and the potential severity of

he upcoming fire season can be made available in early January,

otentially expanding opportunities for advanced planning and re- 

ource allocation for wildfire preparedness. 
The strong correlations between average predicted fire proba- 

ility and annual metrics of fire activity (number of large fires,

otal area burned, etc.; see Fig. 4 ) speak to the extent to which

re in Great Basin rangelands is controlled by antecedent condi- 

ions related to the growth of herbaceous vegetation as opposed 

o fuel moisture or fire weather (i.e., it is a fuel-limited system).

his finding is consistent with past research (e.g., Knapp 1998 ;

batzoglou and Kolden 2013 ; Pilliod et al. 2017 ) and suggests in-

ormation about fuel quantity (i.e., biomass) is equally or more im-

ortant than information about fuel quality (i.e., moisture content) 

n sagebrush rangelands. 

A role of fuel moisture is, however, suggested by effects of

horter-term drought indices ( Fig. 6 and Fig. S2, available online at

). For example, the opposite effects of EDDI at longer (e.g., 1 and

 yr) and shorter (e.g., 90 d) temporal scales indicate fire probabil-

ty is maximized when a long-term moisture surplus (i.e., SPEI >

 or EDDI < 0 at 1-2 yr scales) is followed by a dry winter/spring

see Fig. 6 ). Among later forecast dates, however, the effect of cur-

ent year’s growth of fine fuels (afgAGB_ytd and pfgAGB_ytd) be- 

omes increasingly important (see Fig. 5 and Fig. S2). These oppos-

ng effects of spring moisture on fire probability may help explain

he weak correlation between spring conditions and annual fire ac- 

ivity in rangelands of the Great Basin (Fig. S3, available online at

). 

Evidence of weather’s influence during the fire season also ap- 

ears in a few notable outliers in the regression of burned area on

ean fire probability. These include years characterized by partic- 

larly wet late spring and summer conditions in which the burned

rea was well below expectations (e.g., 1997; Fig. S4, available on-

ine at …) and years of above-average summer temperatures in 

hich the burned area exceeded expectations (e.g., 2007; see Fig. 

4). Weather is also highly influential in determining the intra- 
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Figure 6. Partial dependence plots depicting the effects of the 12 top-ranked predictors (by conditional variable importance) on the relative probability of burning in a large 

( > 405 ha) wildfire in the Great Basin for March 22 forecasts. Black lines show the partial dependence function f(x) (centered logit of fire probability), with the general shape 

of the relationship highlighted with a LOESS smoother (span = 0.75; red lines ). 
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nnual timing of fire activity and outcomes of individual fires,

nd therefore fire danger indices based on vegetation flammabil-

ty and atmospheric conditions will continue to play a central role

n short-term preparedness and fire suppression. 

Herbaceous fuels—forbs and grasses—were the most influen- 

ial predictors of fire probability, whereas woody fuels (trees and

hrubs) were relatively unimportant (see Fig. 5 ). Inference regard-

ng the effects of tree cover was limited, however, by the way we

efined our study area; most regions exceeding approximately 5%

ree cover were excluded. Although the presence and abundance

f woody vegetation increase flame lengths, fire intensity, and res-

dence time with potential negative implications for suppression

nd postfire recovery ( Strand et al. 2013 ; Boyd et al. 2015 ; Weiner

t al. 2016 ), the probability of burning per se is controlled pri-

arily by characteristics of the herbaceous understory. To the ex-

ent that certain woody species (e.g., western juniper; Miller et al.

0 0 0 ) can reduce herbaceous cover, higher woody fuel loads may,

n fact, be associated with reduced incidence of fire ( Miller and

ausch 20 0 0 ). Moreover, certain treatments to reduce woody vege-

ation can increase herbaceous fuels (e.g., through soil disturbance

r release from competition, Pyke 2011 ; Pyke et al. 2014 ). An effec-

ive fuel management program must consider the distinct roles of

erbaceous and woody fuels and the likely effects of management

nterventions on both fuel types. If reducing the incidence of large

ildfires is the objective, fuel management should emphasize the

eduction of herbaceous fuel loads. Where fire suppression effec-
fi  
iveness and safety are primary concerns, woody fuel treatments

ay be appropriate. 

Although intense interest has attended the role of exotic annual

rasses in fueling large fires in the Great Basin and throughout the

estern United States ( Balch et al. 2013 ; Davies and Nafus 2013 ;

usco et al. 2019 ), perennial grasses and forbs were equally im-

ortant as predictors of burning (see Fig. 5 ). Total annual herba-

eous production in the previous year was the highest in overall

mportance across metrics and forecast dates (with the exception

f conditional importance for May 25 forecasts). This suggests the

omposition of herbaceous fine fuels may be less critical than the

uantity for predicting occurrence of fire. While there is ample

vidence exotic annual grasses have reduced fire return intervals

n western US rangelands ( Balch et al. 2013 ), ecoregional-scale in-

erannual variation in fire activity remains strongly controlled by

eather-driven variation in productivity of perennial herbaceous 

egetation ( Pilliod et al. 2017 ). 

Long-term trends in fire activity, on the other hand, appear to

e driven predominantly by increasing cover and production of

nnuals. A trend of increasing annual burned area has recently

merged in the Great Basin (Fig. S5, available online at …), with

he 12 largest fires in the MTBS record within our study area hav-

ng occurred since 20 0 0 (of those, 8 occurred since 2010). This

irrors increases in fire activity occurring across ecosystems of

he western United States—a trend that has been attributed in

art to the emerging influence of anthropogenic climate change on

re weather and fire season length ( Jolly et al. 2015 ; Abatzoglou
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Figure 7. 2017 fire probability in the Great Basin, United States (March 22 forecast date). Insets highlight the applicability across a range of spatial scales. Used in conjunction 

with fire danger indices, other fire forecasts, and expert knowledge, seasonal fire probability maps may help managers at multiple levels prepare for where and when 

ignitions are likely to result in large and damaging wildfires. Perimeters of large ( > 405 ha) wildfires that occurred in 2017 are depicted in purple within insets. The lower 

left inset shows the 2017 Rooster Comb fire, with darker shading indicating unburned areas. 
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nd Williams 2016 ; Abatzoglou et al. 2019 ; Bowman et al. 2020 ).

mong the shrublands and grasslands of the Great Basin, however, 

he upturn appears to be driven largely by increasing fine fuels—

n particular, exotic annual grasses. While perennial forb and grass 

roduction has remained stationary to slightly decreasing, cover 

nd production of annuals has increased rapidly ( Pastick et al.

021 ; Smith et al. 2022 ), with an attendant rise in average fire

robability (see Fig. S5). This trend in fire probability, in turn, ap-

ears to largely explain the increase in burned area (see Fig. 4 and

ig. S5), with little indication that variation in burned area has be-

ome decoupled from variation in fuel quantity. We verified this 

ith a post-hoc analysis in which we fit a linear regression relat-

ng total annual burned area ( 
√ 

ha ) to mean herbaceous produc-

ion (kg ·ha −1 ) in the previous yr (the most important predictor

rom our models) at the scale of the Great Basin. The fitted regres-

ion had an R 2 of 0.48, and residuals exhibited no temporal trend

Mann-Kendall Z = −0.34, P = 0.73). This implicates increasing fine

uels, rather than more extreme fire weather or longer fire seasons,

s the primary factor responsible for increasing fire activity in the

reat Basin (also see Balch et al. 2013 ). 

mplications 

The ascendancy of fine fuels as drivers of interannual and spa-

ial patterns in wildfire activity in Great Basin rangelands under- 

cores the potential efficacy of fuel management for mitigating 

ildfire hazard. Alongside ignitions, fuels are among the only fac- 

ors that can be preemptively addressed by land managers. Al- 

hough fine fuels exert strong control on fire in these ecosystems,

ther factors such as extreme fire weather and national-scale de- 

and on resources still play an important role in the outcomes of

ndividual fires and fire seasons. The combination of rising produc- 
ion by invasive annual grasses, weather-driven peaks in perennial 

orbs and grass production, and synchronous extreme fire weather 

re likely to increasingly challenge the capacity of fire-suppression 

esources and cause wildfire disasters. However, long-lead, fuels- 

ased spatial forecasts such as those developed here may help 

anagers anticipate and mitigate such events. Managers moni- 

or a suite of indicators of fire danger, including drought indices,

nowpack, long-term weather outlooks, and vegetation moisture 

ata as the fire season approaches. Because these indicators vary 

idely in spatial and temporal grain and extent, their integration 

nto a coherent picture of the regional distribution of fuels leading

nto the fire season remains challenging, particularly at subecore- 

ional scales. A major contribution of the framework we present 

ere is the integration of many of the indicators already widely

sed by managers into a single predictive metric applicable across 

 broad range of spatial scales, from the pixel to the ecoregion

 Fig. 7 ). Used alongside short-term fire danger indices and other

ools, these forecasts may help managers more accurately predict 

nd prepare for where and when ignitions are likely to result in

xpensive, dangerous, and ecologically damaging large wildfires. 
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