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ABSTRACT Sage-grouse (Centrocercus spp.) are influencing rapidly evolving land management policy in
the western United States. Management objectives for fine-scale vegetation characteristics (e.g., grass
height >18 cm) have been adopted by land management agencies based on resource selection or rela-
tionships with fitness proxies reported among numerous habitat studies. Some managers, however, have
questioned the appropriateness of these objectives. Moreover, it remains untested whether habitat—fitness
relationships documented at fine scales (i.e., among individual nests within a study area) also apply at scales
of management units (e.g., pastures or grazing allotments), which are many orders of magnitude larger. We
employed meta-analyses of studies published from 1991 to 2019 to help resolve the role of fine-scale
vegetation structure in nest site selection and nest success across the geographic range of greater sage-grouse
(C. urophasianus) and evaluate the validity of established habitat management objectives. Specifically,
we incorporated effects of study design and functional responses to resource availability in meta-regression
models linking vegetation structure to nest site selection, and used a novel meta-analytic approach to
simultaneously model vegetation structure and its relationship to nest success. Our approach tested habitat
relationships at a range-wide extent and a grain size closely matching scales at which agencies make
management decisions. We found moderate, but context-dependent, effects of shrub characteristics and
weak effects of herbaceous vegetation on nest site selection. None of the tested vegetation characteristics
were related to variation in nest success, suggesting nesting habitat—fitness relationships have been in-
appropriately extrapolated in developing range-wide habitat management objectives. Our findings reveal
surprising flexibility in habitat use for a species often depicted as having very particular fine-scale habitat
requirements, and cast doubt on the practice of adopting precise management objectives for vegetation
structure based on findings of individual small-scale field studies. © 2020 The Authors. The Journal of
Wildlife Management published by Wiley Periodicals, Inc. on behalf of The Wildlife Society.

KEY WORDS Centrocercus urophasianus, functional response, habitat, meta-analysis, micro-habitat, nest success,
sage-grouse, scale, selection.

Rangeland ecosystems of North America are beset by per-
sistent and pervasive anthropogenic land-use and land cover
change. Agents of change include woodland expansion
(Briggs et al. 2005, Romme et al. 2009), positive feedbacks
between exotic annual grasses and wildfire (D'Antonio and
Vitousek 1992), energy and infrastructure development
(Allred et al. 2015), cropland conversion (Lark et al. 2015),
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and residential development (Hansen et al. 2002, Galvin
and Ellis 2008). These broad-scale threats continue to erode
ecosystem services and habitat for sensitive species despite
extensive documentation of effects and existing regulatory
frameworks, leading some to question the adequacy of
conservation and management paradigms for rangelands
and their inhabitants (Briske et al. 2003, Boyd et al. 2014).

Sage-grouse (Centrocercus spp.) are intensively studied
species influencing rangeland management policy in the
western United States. As sensitive and charismatic sage-
brush (Artemisia spp.) obligates, sage-grouse have become a
primary focal point for conservation and management of
sagebrush rangelands, which are among the most imperiled
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ecosystems in North America (Noss et al. 1995). Sometimes
called landscape species because of their large area require-
ments and use of diverse seasonal habitats throughout
their life-cycle (Knick and Connelly 2011), sage-grouse
populations are sensitive to disturbances at large spatial
scales (Aldridge et al. 2008, Naugle et al. 2011, Baruch-
Mordo et al. 2013, Smith et al. 2016). Nevertheless, fine-
scale metrics (e.g., food, cover) remain a cornerstone of
habitat management even as broad-scale threats continue to
diminish usable space (Guthery 1997). Misalignment be-
tween the focal scale of management and ultimate causes of
population declines has contributed to the failure to recover
other species (e.g., northern bobwhite quail [Colinus
virginiana]; Williams et al. 2004). Thus, a better under-
standing of the importance of fine-scale habitat attributes
will help managers effectively prioritize limited resources.

Habitat management guidelines for sage-grouse were built
upon a foundation of decades of research examining links
between vegetation structure measured at fine grain sizes
(mostly <1 ha) and individual-level fitness proxies (Fig. 1).
In the most-cited publication on sage-grouse to date,
Connelly et al. (2000) informally synthesized available
studies to develop vegetation management objectives that
have been widely incorporated into documents guiding
management of federally administered lands in the United
States (Stiver et al. 2015, U.S. Fish and Wildlife Service
2015). These objectives include heights and percent cover of
major vegetation functional groups for breeding, brood-
rearing, and winter habitats (Connelly et al. 2000:977).
However, recognizing the inherent heterogeneity of sage-
brush ecosystems, managers have questioned the feasibility
and efficacy of these objectives (Schultz 2004, Davies et al.
2006, Dahlgren and Thacker 2019).

Scale is central to 2 primary criticisms of vegetation
management objectives. First, these objectives represent an
effort to summarize findings of studies conducted across a
geographic range characterized by marked spatial and
temporal heterogeneity in vegetation composition and
structure. Behavioral plasticity or local adaptation may
preclude generalization of habitat relationships across a
species' range (Morrison 2012). If habitat relationships
are largely idiosyncratic, range-wide targets for optimal
fine-scale habitat structure may be inappropriate in many

Fine-scale habitat plot

local circumstances. Second, inference from fine-scale
habitat studies may be wholly inadequate to predict out-
comes of large-scale management manipulations on vital
rates of populations (Bro et al. 2004). With few exceptions
(Smith and Beck 2018, Smith et al. 20185), effects of ex-
tensive vegetation manipulation on sage-grouse demography
are poorly studied. Habitat management guidelines and
monitoring assessments thus rest on the assumption that
fine-scale habitat relationships scale up to predict effects
of manipulating vegetation at management scales (e.g.,
pastures, ranches, allotments; Fig. 1). This is a precarious
assumption given that scale-dependence is a pervasive
quality of ecological patterns, including habitat relationships
(Wiens 1989, Rettie and Messier 2000, Bissonette 2013).

Our motivation was to clarify relationships between fine-
scale vegetation structure and sage-grouse resource selection
and demography and test whether patterns from which
widely used management objectives were derived apply at
management-relevant scales. Focusing specifically on
nesting habitat, we approached this by conducting meta-
analyses of nesting studies from across the range of greater
sage-grouse (C. urophasianus). We limited our analysis to
nesting habitat because, as the most thoroughly studied
seasonal habitat, many studies with similar protocols and
reporting comparable data were available. Furthermore, nest
success is among the most important factors influencing
population growth in sage-grouse (Taylor et al. 2012,
Dahlgren et al. 2016) and hence a common management
target (Doherty et al. 2014, Severson et al. 2017, Smith
et al. 20185). The scale of our analysis is novel for this
species and confers several advantages. First, the extent of
our analysis spans the species' geographic range and,
therefore, encompasses a gradient of vegetation character-
istics appropriate for testing management guidelines applied
at the species level (Morrison 2012). Second, nesting studies
are conducted over areas ranging from approximately
100 km? to several thousand square kilometers (median re-
ported study area size among studies in this meta-analysis
was 1,250 km?), which is a grain size comparable to man-
agement units in this region (Fig. 1).

Our first objective was to quantify selection for nest site
characteristics, expanding on an earlier meta-analysis of
sage-grouse nesting habitat selection (Hagen et al. 2007).
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Figure 1. The grain sizes of plots used to quantify vegetation structure at sage-grouse nest sites correspond to Johnson's (1980) definition of third and fourth
orders of habitat. Inference from fine-grain studies has strongly influenced management of vegetation at much larger spatial scales. For example, the
19,537 Bureau of Land Management grazing allotments in the United States occupied by greater sage-grouse are characteristic of the grain size at which
management assessments and decisions are made. Because habitat relationships are often scale-dependent, relationships between average vegetation structure
and demographic rates among studies in North America from 1991-2019 may reveal more about the likely effects of management than inference from

individual-level, fine-grain studies.
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Capitalizing on the proliferation of sage-grouse nesting
habitat studies during the intervening decade, we tested
several potential sources of variation in strength of selection
for nest site characteristics among studies. These included
elements of study design and behavioral responses to var-
iation in ecological context. Because selection for critical
resources should appear stronger where the availability of
those resources is low (i.e., functional response; Mysterud
and Ims 1998, Matthiopoulos et al. 2011), testing for re-
lationships between selection strength and availability
should help identify particularly important nest site char-
acteristics. Our second objective was to test for relationships
between fine-scale vegetation structure and nest success
rates among studies to identify variables likely to influence
sage-grouse productivity if manipulated over large areas via
management. Finally, we sought to quantify the agreement
between fine-scale nest site habitat structure among studied
populations and the objectives proposed in Connelly et al.
(2000) and widely used by land management agencies.

METHODS

Literature Review

We searched Web of Science, ProQuest Dissertations, and
Google Scholar for published studies, theses, dissertations,
and reports. Our search keywords included sage-grouse, nest
or nesting, selection or success or survival, and habitat or
vegetation. We also reviewed cited literature from previous
sage-grouse habitat and vital-rate reviews, including Connelly
et al. (2000), Hagen et al. (2007), and Taylor et al. (2012).
Finally, we contacted principal investigators of several recent
or ongoing nesting studies to request unreported summary
statistics. We included only studies that reported means and
standard errors or standard deviations of >1 of the following
vegetation structural characteristics at nest sites and, where
provided, available sites: percent cover of shrubs, percent
cover of sagebrush, percent cover of grasses, percent cover of
forbs, height of shrubs, height of live grasses, and height of
residual or senesced grasses. If grass height was reported
without distinguishing between live and senesced, we con-
sidered it a measurement of live grasses because measure-
ments were of the tallest portion of a plant and heights of live
grasses almost always exceeded those of senesced grasses.
When vegetation cover variables were reported as sub-
categories of the variables we examined (e.g., percent cover of
short, medium height, and tall shrubs; Gregg 1991), we
calculated means and standard deviations of the sums of the
sub-categories to derive the desired variable. When statistics
were reported separately for different groups of nests (e.g.,
successful vs. failed or nests in different substrates or vege-
tation types), we calculated pooled means and standard de-
viations. We recorded several methodological variables,
including the size of vegetation plots and methods used to
estimate height and percent cover of herbaceous vegetation.
When available, we recorded estimates of nest success, the
number of monitored nests, type of transmitter used on
monitored females, typical nest monitoring interval (e.g.,

daily, weekly), and nesting period to which the nest success
estimate pertained (laying, incubation, or both).

Bayesian Meta-Analytical Approach

We used Bayesian methods to estimate parameters while
accounting for variable sample sizes, study designs, and
heterogeneity in ecological context among studies that
might affect responses. We used a multi-level modeling
approach, employing global regression coefficients and hy-
perparameters to model variation in responses among
studies and study units (i.e., data from different sites or years
reported in the same study). We used reported estimates
and their uncertainties to estimate latent (unobserved)
population parameters at each study unit 4, i=1,..., N.
Because a number of unreported factors can introduce
measurement-related errors into estimates of vegetation
cover or height, we included study unit- and variable-
specific measurement error terms to model this variation.
We fit models with Markov chain Monte Carlo (MCMC)
methods in JAGS (Plummer 2003) via the rjags (Plummer
2016) package in R (R Development Core Team 2014). We
report medians and 95% highest posterior density intervals
of MCMC samples of posterior distributions for parameters
of interest. The JAGS model code is available online in
Supporting Information.

Nest Site Selection

Our primary objectives in analyzing nest site selection studies
were to estimate strength of selection for vegetation charac-
teristics and identify functional responses to availability.
Rather than restrict our analysis to studies reporting estimated
coeficients from resource selection models (e.g., resource
selection functions), we used Hedges' g’ (Hedges 1981) as a
common measure of selection that allowed us to incorporate
information from any study reporting distributions of vege-
tation characteristics among a sample of nests and a sample of
availability. Briefly, Hedges' g’ expresses the difference be-
tween the estimated means of 2 groups in units of their
weighted, pooled standard deviation (Hedges 1981). In our
study, g’ indicates the difference between the means of veg-
etation characteristics at use samples (nest sites) and avail-
ability samples (random sites). In this context, g'>0 is
consistent with selection and g’ < 0 avoidance.

A previous meta-analysis of sage-grouse nest site selection
assumed strength of selection arose from a common dis-
tribution (Hagen et al. 2007). We took advantage of the
larger number of studies now available to test potential
sources of variation in g;. In particular, we tested for a linear
relationship between g;/ and mean availability x4, rep-
resenting a hypothesized functional response in which
strength of selection depends on availability. We also esti-
mated effects of 2 elements of study design we hypothesized
could affect the magnitude of g;/. First, we considered an
effect for paired study designs where the availability sample
was spatially constrained to within an easily traversed dis-
tance (usually 100-500 m) of used sites (paired =1 if con-
strained; otherwise, paired=0). This could affect the
differences between available and used sites because of
hierarchical resource selection or spatial autocorrelation in

Smith et al. * Sage-Grouse Nesting Habitat

761



vegetation structure. Second, studies measure vegetation
using various grain sizes (i.e., the diameter or width of the
vegetation plot centered at the point of interest), ranging
from 2-60 m (median = 10) for herbaceous vegetation var-
iables and from 2-100 m (median = 30) for shrub variables.
Therefore, we grouped studies into 2 categories indicating
those where vegetation was measured at grain sizes >20 m
(large grain=1) or a smaller grain size (large grain =0).
We fit a separate model for each recorded vegetation
metric, using reported means, # and 4, at use (U) and
availability (4) samples to estimate latent true means,
and X7, of the vegetation characteristics at each 7 study unit:

' ~ N + ¢, SE®))

fiA ~ N(X;A + €, SE(%)ZA)’

where SE(x)Y and SE(x)/ are the reported standard errors
associated with x” and x4, respectively, and ¢; is an additive
measurement error term accounting for various unreported
sources of heterogeneity such as observer effects or pheno-
logical stage of vegetation. We assumed €; was equal among
used and availability samples within a study unit, and nor-
mally distributed with mean 0 and standard deviation o“.

We assumed availability at each study unit, XA, arose
from a log-normal distribution with a global mean, u? and
standard deviation, 0%

In(X/") ~ N(u?, o),

and use was related to availability via the standardized dif-
ference g’, which we scaled by the pooled standard deviation
s(x)Pooted among use and availability samples:

XY = g/sG)l" + X/

’

S(x)z)oo/ea’ — \/(niU - 1)5(36)5] + (niA - 1)§(x)zA

n? + nd -2

where n”and 74 are sample sizes of use and availability
samples and s(x)Y and s(x)f are the reported standard
deviations at use and availability samples.

We modeled variation in g;’ with a linear model including
an intercept and effects of estimated availability X7 (ie., a
functional response), paired sampling design, and large
(>20 m) measurement grain, and random effects for study
(a)) and study unit (y,):

gl =By + [31XiA + B,paired; + B;large grain, + o;p;) + ¥,
a; ~ N(,0%), forj=1,..,],
7. ~ N(0, a7).
We placed compact but relatively uninformative U(-5,5)

and U(0,5) priors on global (log-scale) means (u?) and
standard deviations (o). We experienced difficulty with

MCMC convergence when we placed a vague uniform prior
on the standard deviation among measurement errors (0°)
so we fixed 0 equal to 10% of the overall mean of ¥4 among
included study units. We felt it was reasonable to expect
measurement errors would fall within this distribution.
Reasonable values of g’ were in the range of —3 to 3 so we
placed U(—5,5) priors on regression coefficients and U(0,5)
priors on ¢” and ¢”. JAGS code is available online in
Supporting Information. Inference was based on 20,000
MCMC samples, 10,000 each from 2 independent
chains, after discarding 251,000 burn-in samples from each
chain.

Nest Success
To assess relationships between nest success and vegetation
characteristics, we fit 2 meta-regression models with nest
success (S) as the dependent variable. In the first model, we
used average vegetation characteristics at nests as predictors
(i.e., use model), and in the second model we used the same
characteristics measured at available sites (i.e., availability
model). We chose to fit the second model for 2 reasons.
First, samples of availability are most directly relevant to
managers, who often do not have the benefit of marked
individuals and known nest sites and instead must judge
habitat quality based on a representative sample of potential
nesting habitat. Second, if use was found to be relatively
invariant across a gradient of availability, then availability
data might contain information about effects of vegetation
structure on nest success that use data alone would lack.
We first standardized study unit-level estimates of § (§;) to
reflect the probability of a nest surviving a 37-day laying and
incubation period using methods of Johnson and Klett (1985).
We assumed incubation was initiated 1.5 monitoring intervals
(F, the typical number of days between monitoring events)
before nests were discovered to estimate the average exposure
period (E; in days) of successful nests for each study.
Incubation averages 27 days (Blomberg et al. 2015), so the
exposure period E; =27 —1.5F; We then calculated daily
survival rate during incubation: DSR¥fion — ¢1/E e
found only 2 studies that attempted to estimate daily survival
rate separately for laying and incubation. Walker (2008) re-
ported DSR was slightly higher, whereas Gibson et al. (2015)
reported DSR was slightly lower, during laying than during
incubation. Therefore, we assumed daily survival during
laying, which averages 10 days (Blomberg et al. 2015), was
equal to daily survival during incubation. We calculated an
adjusted estimate of the probability of a nest surviving from
the beginning of laying to hatch: §/ = DSR?”. We did not
adjust estimates of nest success that already included the laying
and incubation periods (i.e., §; =), and set E; to 27 days for
studies that estimated nest success for the whole incubation
period. We excluded studies that used poncho-type trans-
mitters (Amstrup 1980) because they are highly visible and
may increase probability of detection by predators or alter the
relationship between concealment and predation risk (Taylor
et al. 2012). Preliminary analysis confirmed that standardized
estimates of nest success were significantly lower among study
units in which poncho-type transmitters were used.
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Because different subsets of the 6 tested vegetation
variables were measured or reported among studies with
estimates of nest success (range=2-6, median=4), we
estimated parameters of a global-level (i.e., range-wide)
multivariate log-normal distribution to help estimate the
complete latent vector of true means of all 6 vegetation
characteristics (X;) at each study unit. These study
unit-level latent parameters are, therefore, estimated with
information about the distributions of, and correlations
among, vegetation characteristics across the range in ad-
dition to the reported study unit-level data. This approach
allowed us to include all studies with estimates of nest
success regardless of the particular subset of reported
vegetation variables and explicitly accounts for the sam-
pling and measurement error in the independent variables.

We modeled nest success as a binomial process using integer
outcomes trials and successes comparable across 7 study units:

successes; ~ Binomial(trials;, S;),

where trials; was the total number of nests used to estimate
reported §;, and successes; was derived as the product §; X
trials; rounded to the nearest integer. This obviated the need
to incorporate estimates of variance from each study unit,
which were frequently unavailable (e.g., for studies sup-
plying only apparent nest success), because the variance of a
binomial random variable depends only on probability of
success and number of trials.

We modeled variation in nest success S; with a regression
model of the form:

logit(S;) = By + BX: + a;i) + ¥

We included group-level effects to account for un-
measured variables at the study level (e.g., observer effects):

a; ~ N(0,0%

and study unit level (e.g., weather, predator abundance or
community composition, age structure, average body con-
dition) that could affect nest success independent of effects
of vegetation:

v~ N(0, o).

We modeled reported means of vegetation characteristics
(%) as arising from latent means X, which were un-
observable because of sampling and measurement error:

Fyp ~ N (X + €z, SE(X)),

where SE(%);, is the reported standard error, and € is an
additive measurement error term accounting for unreported
sources of heterogeneity such as observer effects or pheno-
logical stage of vegetation. We assumed measurement errors
(€i) were normally distributed with mean 0 and standard
deviation o, on which we placed U(0,10) priors. We esti-
mated vectors of latent means of vegetation characteristics
(X;) using a multivariate log-normal distribution,

In(X;) ~ MVN(g %).

Because of collinearity among predictors (some |7| > 0.7),
we used Bayesian variable selection with indicator variables
(Kuo and Mallick 1997) to simultaneously identify the most
supported subset of predictors and estimate their effects
(Mutshinda et al. 2013, Ghosh and Ghattas 2015).
Regression coefficients (8) were the product of vectors of in-
dependent binary indicator variables (I) and continuous effect
size parameters (6): f=16. We calculated posterior model
probabilities and Bayes factors from the posterior distribution
of I to express the relative evidence for each candidate model.

We placed a N(0,1.6) prior on f3y, resulting in an approx-
imately U(0,1) prior on the probability scale. We placed in-
dependent Bernoulli(0.5) priors on indicators. We held total
model uncertainty constant across candidate models by scaling
the prior on effect sizes (6) by the total number of variables in
the model at each step in the MCMC chain (Link and Barker
2006; see JAGS code in Supporting Information). We placed
U(0,10) priors on standard deviations of study and study unit-
level effects (6° and ¢”). We used a scaled inverse-Wishart
prior (Gelman and Hill 2006) on parameters g and X of the
global multivariate normal distribution. This relaxed con-
straints imposed on the standard deviations and correlations
of a multivariate normal distribution by a standard inverse-
Wishart prior, and involved estimating independent scaling
parameters (&) for each variable and an unscaled variance-
covariance matrix (Q) to derive the elements of the mean
vector M, variance-covariance matrix X, and correlation matrix
p. We placed flat priors on each scaling parameter,

£, ~ U(0,100)

and an inverse-Wishart prior with degrees of freedom = K+ 1
and scale=1 (the KX K identity matrix) on the unscaled
variance-covariance matrix,

0O ~ Inv-Wishartg 1 (I).

The variance-covariance matrix X was then derived as:

% = Diag(£) QDiag(®).

We derived elements of the mean vector (g) by multi-
plying a vector of unscaled (raw) mean parameters (1™**) by
the vector of scaling parameters & We placed vague normal
priors on the raw mean parameters,

@ ~ N(0,100).

We derived standard deviations from the scale parameters
and elements of the unscaled variance-covariance matrix,

=& VOu
and correlations,

Py = %,/(g0;) (Gelman and Hill 2006).

Variation in vegetation measurement methods among studies
posed a potential source of error in our meta-regressions.
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Therefore, we conducted a sensitivity analysis to explore the
potential effect of bias associated with variation in methods for
measuring grass height (Appendix A) and, using simulations,
developed correction factors to standardize canopy cover esti-
mates prior to model fitting (Appendix B). JAGS code is
available online in Supporting Information. Inference from nest
success models was based on 100,000 MCMC samples, 50,000
each from 2 independent chains, after discarding 1,010,000

burn-in samples from each chain.

Assessment of Objectives

To compare the published management objectives in
Connelly et al. (2000: table 3) and Stiver et al. (2015: table 5
and form S-3) to the multivariate distribution of vegetation
structure among study areas, we derived the following var-
iables from our nest success models. For each iteration / of
the MCMC chain, we reclassified the V X K matrix of
latent true means of vegetation structural characteristics 0.9
into a binary matrix (G), indicating whether each variable
fell within the most permissive range prescribed in the ob-
jectives (i.e., sagebrush cover 15-25%, shrub height 30—
80 cm, grass cover >10%, forb cover >5%, residual or live
grass height >18 cm [the objectives do not discriminate
between live and residual grass]). We then summed G by
row to derive a vector of length /V indicating the estimated
number of objectives met at each study unit (M, integer
from 0-5). Finally, we reclassified M to a binary breeding
habitat suitability vector (1 if M/ =5, else 0), and took
the mean across study units to arrive at an estimate of the
proportion of N study units deemed fully suitable by the
guidelines. We report the median and 95% credible interval
(CRI) of this derived variable for use and availability
models, and provide histograms of the estimated number of
objectives met among study units.

RESULTS

Our search yielded 43 studies meeting our criteria for in-
clusion (Fig. 2; Tables S1-S9, available online in Supporting
Information), including 25 theses or dissertations, 13 peer-
reviewed articles, and 5 government reports. We contacted
the authors of several studies that reported relevant statistics
but pooled data from >1 study area separated by >25 km and
were subsequently provided the unpooled statistics from 2 of
those studies (Doherty 2008, Kirol et al. 2012). We excluded
10 study units from 5 studies from the nest success meta-
analyses because the investigators used poncho transmitters
(Gregg 1991, Fischer 1994, Hanf et al. 1994, Apa 1998,
Sveum et al. 1998). The final dataset included studies from
all 11 states in the United States and 2 Canadian provinces
occupied by greater sage-grouse, and all 7 management
zones (Fig. 2).

Nest Site Selection

Gelman diagnostics (<1.1) and visual examination of
posterior distributions indicated adequate mixing and
convergence among MCMC chains for all variables.
Model estimates of latent parameters XY and X7 were
strongly correlated (r > 0.98) with reported means ¥ and

x4 for all vegetation characteristics. Selection for all
vegetation characteristics tended to be positive (Fig. 3;
Fig. S1, available online in Supporting Information), and
the strongest selection was for sagebrush cover, total shrub
cover, and shrub height (Table 1). A functional response
was strongly supported only for sagebrush cover
(81 =-0.03, 95% CRI=-0.04 to —0.02), total shrub
cover (81=-0.02, 95% CRI=-0.03 to —0.01), and
shrub height (8; =—0.01, 95% CRI=-0.02 to 0.00). A
functional response to availability was weakly supported
for live grass height (8; =—0.01, 95% CRI=-0.03 to
0.01). Across nearly all tested variables, selection appeared
stronger when available sites were sampled using a random
(study area-wide) sampling scheme (8, < 0; Table 1), with
live and residual grass heights the exceptions to this trend.
However, credible intervals for 8, overlapped zero for all
variables (Table 1). Estimated coefficients of the forb
cover model indicated there may be weak selection for
nesting areas with greater forb cover but that this effect
diminishes or even reverses at smaller spatial scales cap-
tured with paired availability sampling. Grain size had less
influence on strength of selection; point estimates of 3
were mostly negative, suggesting studies measuring vege-
tation characteristics within 20 m of the point of interest
better differentiate nests from available points, but
credible intervals for 83 widely overlapped zero for all
variables (Table 1). This is consistent with previous re-
search reporting strong cross-scale correlations (> 0.8)
for vegetation characteristics measured around sage-

grouse nests (Gibson 2015).

Nest Success

Standardized estimates of nest success (§') ranged from 0.10
to 1.0 (¥ = 0.36; Table S2). Ninety study units from J=35
studies were included in the use model, and 77 study units
from J= 28 studies were included in the availability model.
Gelman diagnostics (<1.1) and visual examination of pos-
terior distributions indicated adequate mixing and con-
vergence among MCMC chains for all parameters for use
and availability models.

For the use model, the posterior mean inclusion proba-
bility, P(I; = 1), of all vegetation variables was <0.5 and the
model containing only the intercept and random effects
received strong support with a Bayes factor (BF) of 6.60
(Table 2). The second-ranked model (BF = 2.63) included a
weak negative effect of forb cover (83=-0.09, 95%
CRI=-0.28 to 0.10) and the third-ranked model
(BF =1.99) included a weak negative effect of live grass
height (85 =—0.07, 95% CRI=-0.25 to 0.12) on nest
success. Conditioned on the top model, the intercept
(Bo=—-0.71, 95% CRI=—-0.92 to —0.51) indicated global
average nest success for a 37-day exposure period was 0.33
(95% CRI=0.29-0.38). Study-level variation (0”=0.42,
95% CRI=0.21 to 0.64) was similar to study unit-level
variation (6”7 =0.43, 95% CRI=0.29 to 0.57), consistent
with the fact that these groupings were often redundant
because many studies (22 of 35) contributed only a single
nest success observation.
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Figure 2. Sage-grouse nesting studies across North America included in meta-analyses of the effects of vegetation characteristics on nest site selection and
nest success based on studies from 1991-2019. Colored polygons represent sage-grouse management zones (Stiver et al. 2006), with the estimated current
range of greater and Gunnison (Centrocercus minimus) sage-grouse depicted by darker shading (Schroeder et al. 2004).

The availability model yielded qualitatively similar results
but with slightly more model uncertainty (Table 2).
Posterior mean inclusion probabilities of all vegetation ef-
fects were <0.50. The top-ranked intercept-only model
(BF=5.52) received more than twice the weight of the
second-ranked model (BF =2.52), which included a slight
positive effect of sagebrush cover on nest success (8; =0.12,
95% CRI=-0.14 to 0.40). The third ranked model
(BF =2.24) included a weak negative effect of live grass
height (85 =—0.10, 95% CRI =-0.30 to 0.12). The top-
ranked model intercept (8p=—0.76, 95% CRI=-1.0 to
—0.49), study-level standard deviation (¢”=0.47, 95%
CRI=0.23 to 0.73), and study unit-level standard deviation
(6 =10.43, 95% CRI = 0.28 to 0.58) were similar to the use
model.

Among studies, there were strong correlations between
sagebrush cover and shrub height (o = 0.80), grass and forb
cover (p=0.70), and heights of live and residual grasses
(p=0.70) at nest sites. Grass cover and residual grass

height were moderately correlated (0=0.61), and shrub

characteristics were moderately to weakly negatively corre-
lated with most herbaceous vegetation characteristics
(Table 3). Correlations among vegetation characteristics at
available sites were generally similar to correlations at used
sites (Table 3).

Correcting grass heights to account for differences in
measurement methods did not change inference with regard
to the effect of grass height on nest success. The intercept-
only model retained the most support for both use and
availability models and the direction of coefficients for grass
height remained negative among lower-ranked models

(Appendix A).

Assessment of Objectives

Mean vegetation structure at nest sites was estimated to
meet all 5 breeding habitat objectives from Connelly et al.
(2000:977) in 11.1% (95% CRI=5.5 to 16.6%) of 90 study
units (Fig. 5A). Mean vegetation structure at available sites
met all 5 objectives in an estimated 5.2% (95% CRI=0.0 to
10.3%) of 77 study units (Fig. 5B). Consistent with the lack of
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on studies from 1991-2019. Colors correspond to sage-grouse management zones (Stiver et al. 2006), and point size is proportional to sample size (number

of nests). A 1:1 slope is indicated by solid black lines.

association between nest success and any of the tested vegeta-
tion variables (Figs. S1 and S2), there was no apparent rela-
tionship between nest success and the number of guidelines
met at nests or available sites (Fig. 5).

DISCUSSION

Consistent with a view of sage-grouse nesting habitat as
essentially homogeneous environments where predation risk
is unpredictable (Gerber et al. 2019), and in stark contrast to
the degree of specialization implied in management ob-
jectives, we show that nesting sage-grouse are fine-scale
habitat generalists, selecting slightly shrubbier but otherwise
unremarkable patches of vegetation without consequences
for nest success. By highlighting the variability among
successfully exploited nesting habitats across their range, our
results challenge the validity of widely adopted habitat
management objectives. Among the most striking results
was the strong correlation between available and selected
nest sites (Fig. 3). Throughout their geographic range, sage-
grouse select nest sites nearly indistinguishable from the
surrounding landscape. On average, only half a standard
deviation differentiated shrub structure at nest sites from
available sites (Fig. S1). For herbaceous vegetation charac-
teristics, differences were even smaller.

Use-availability differences, including the metric used
herein (Hedges' g’; Fig. S1), should be viewed as hypothesis-
generating patterns and, ideally, interpreted in conjunction
with inference on demographic performance. Previous hab-
itat syntheses have overemphasized univariate differences
between use and availability, interpreting them as evidence
of fitness consequences that influence patterns of selection
(Connelly et al. 2000, 2011; Braun et al. 2005). Such inter-
pretations, however, may be confounded by even weak,
within-study correlations among vegetation or abiotic varia-
bles (e.g., topographic position, aspect, or soil attributes).
For example, heights of live and residual grass were positively
correlated (0.15<7<0.25; J. T. Smith, University of
Montana, unpublished data) with sagebrush cover and
shrub height in central Montana (Smith et al. 20184). Where
similar correlations exist, apparent selection for taller grasses
could be an artifact of true selection for shrub structure.
Studies employing multiple regression model-based methods
less susceptible to confounding variables provide equivocal
support for selection of greater herbaceous vegetation height
or cover. Positive selection is supported in several of these
studies (Aldridge 2005, Holloran et al. 2005, Tack 2009,
Gibson et al. 2016) but unsupported in many others
(Aldridge and Brigham 2002, Kolada et al. 2009, Doherty
et al. 2010, Lockyer et al. 2015, Dinkins et al. 2016).
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—0.03 (—0.26 — 0.21) 0.22 (0.11 - 0.36) 0.11 (0.00 — 0.21) 3.66 (3.56 — 3.77) 0.36 (0.28 — 0.45)

—0.09 (—0.34 - 0.15)
—0.16 (—0.88 — 0.54)

—0.01 (—0.02 - 0.00) —0.12 (—0.34 - 0.09)

—0.01 (-0.03 - 0.01)

0.90 (0.52 - 1.28)

Shrub height (cm)

0.43 (0.35 - 0.51)

0.22 (0.11 - 0.35) 2.71 (2.60 — 2.81)

0.16 (0.00 — 0.32)

0.26 (0.07 — 0.43)

0.13 (—0.12 - 0.38)
0.07 (-0.52 — 0.61)

0.45 (0.08 — 0.83)

Live grass height (cm)

0.70 (0.49 — 0.98)

1.99 (1.70 - 2.27)

0.24 (0.00 - 0.60)

0.00 (—0.03 - 0.03)

0.34 (—0.10 - 0.77)

Residual grass height (cm)

Commonly, habitat studies sample only a small and bio-
logically arbitrary subset of the species over a short period of
time, and are therefore unlikely to produce knowledge of
habitat relationships universally applicable to a species
(Morrison 2012, McKellar et al. 2014, Van Horne and
Wiens 2015). That none of the fine-scale vegetation metrics
identified in breeding habitat management guidelines scaled
up to predict range-wide variation in nest success should
perhaps be unsurprising given the disagreement about such
relationships in the literature. The lack of association be-
tween vegetation structure and nest success at a range-wide
scale does not imply local relationships do not exist. Rather,
it confirms what an objective survey of the literature sug-
gests, i.e., local relationships are variable and idiosyncratic,
such that range-wide benchmarks for suitable breeding
habitat are of doubtful utility.

Effective management of ecosystems upon which sensitive
species rely requires knowledge of system dynamics and re-
sponses to management actions spanning spatial and temporal
scales. Reductionist approaches yielding relationships among
constituent parts, typified by fine-scale, individual-level habitat
studies, are necessary but insufficient to gain such an under-
standing (Kessler et al. 1992, Bennetts et al. 1998, Bro et al.
2004). Rather, reliable knowledge of how management affects
populations requires data at a scale that matches the question.
This could include large-scale management experiments or
observational studies of actual management actions (Walters
and Holling 1990). Fortunately, such investigations are in-
creasingly common (Monroe et al. 2017, Smith and Beck
2018, Smith et al. 20182, Olsen 2019). For example, recent
management studies have affirmed the effectiveness of
watershed-scale restoration of conifer-invaded sagebrush ran-
gelands (Severson et al. 2017, Olsen 2019) but have failed to
demonstrate clear benefits of managing fine-scale vegetation
structure, e.g., via grazing management (Smith et al. 2018) or
other treatments (Smith and Beck 2018) intended to increase
herbaceous understory cover.

Managers, who are charged with multiple, often com-
peting goals with limited resources, may be justifiably
frustrated when scientific guidance proves a poor fit for local
conditions. Available vegetation failed to meet the accepted
definition of suitable breeding habitat in 95% of reviewed
studies, leaving little doubt that many managers will find
these targets difficult, if not impossible, to achieve (Fig. 4).
Some variables (e.g., shrub height) are essentially unman-
ageable, whereas others (e.g., grass height, forb cover) ex-
hibit considerable natural fluctuation in response to
weather. With few tools available to achieve them, ambi-
tious habitat management targets may predetermine a par-
ticular management action and limit managers' flexibility to
respond appropriately to other local issues or management
goals. Lacking evidence that meeting these objectives pro-
vides demographic benefits to the target species (Fig. 5),
effort and resources spent pursuing them may be more
judiciously directed toward maintaining vegetation con-
ditions that promote resistance to ecosystem-scale threats
such as exotic annual grass invasion and woodland ex-
pansion and resilience to disturbances such as fire and
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Table 2. Model ranks, posterior model weights, and Bayes factors for the 10 highest-ranked meta-regression models of effects of fine-scale vegetation
structure on greater sage-grouse nest success across their geographic range in North America, 1991-2019.

Model (sign of coefficient)

Posterior model weight® Relative model weight Bayes factor”

Use Intercept-only
Forb cover (=)
Sagebrush cover (—)
Live grass height (—)
Grass cover (—)
Shrub height ()
Residual grass height (—)

Grass cover (—)+ live grass height (—) + residual grass height (+)

Live grass height (—) + residual grass height (+)
Forb cover (—) + residual grass height (+)
Intercept-only

Sagebrush cover (+)

Live grass height (—)

Residual grass height (—)

Grass cover (—)

Live grass height (=) + residual grass height (—)
Forb cover (—)

Shrub height ()

Sagebrush cover (+) + shrub height (=)
Sagebrush cover (+) + residual grass height (=)

Auvailability

0.095 1.00 6.60
0.040 0.42 2.63
0.031 0.32 1.99
0.030 0.32 1.96
0.029 0.31 1.93
0.027 0.28 1.73
0.026 0.28 1.70
0.024 0.26 1.58
0.023 0.24 1.49
0.022 0.23 1.42
0.081 1.00 5.52
0.038 0.48 2.52
0.034 0.43 2.24
0.032 0.39 2.06
0.025 0.32 1.67
0.023 0.28 1.48
0.023 0.28 1.47
0.022 0.28 1.43
0.022 0.27 1.40
0.022 0.26 1.36

* Prior inclusion probability for each of =6 candidate variables was 0.5, so each of 2* possible models had a prior probability of 0.5° or 1/64.

> The Bayes factor is the ratio of posterior odds to prior odds.

drought. Established and emerging tools are available to aid
managers in these efforts (Pellant et al. 2005, Chambers
et al. 2017).

One-size-fits-all management prescriptions may have un-
intended detrimental effects on ecosystems (e.g., by under-
mining the role of heterogeneity in giving rise to diversity;
Hiers et al. 2016). Sage-grouse have been forwarded as sur-
rogates for conservation of sagebrush-associated fauna be-
cause they are sensitive to anthropogenic disturbance and
require large and diverse landscapes to carry out their life
cycle (Dobkin 1995). At broad scales, high overlap between
sage-grouse and other sagebrush-associated species supports
their potential effectiveness as an umbrella species (Rowland
et al. 2005, Hanser and Knick 2011, Runge et al. 2019). The
coverage of the sage-grouse conservation umbrella, however,
is largely a function of the heterogeneity represented across
their diverse seasonal habitats (Hanser and Knick 2011). At
scales finer than annual home ranges (i.e., third- and fourth-
order; Fig. 1), habitat preferences diverge and overlap with
sympatric species declines (Wiens et al. 1987, Timmer et al.
2019). If a desired outcome of management is to extend
benefits to the widest possible variety of co-occurring species,

heterogeneity at multiple scales should be an explicit man-
agement goal (Fuhlendorf et al. 2017). Precise fine-scale
habitat objectives instead direct managers' attention toward
eliminating undesired variation, with homogenization of
vegetation structure a probable consequence.

MANAGEMENT IMPLICATIONS

We emphasize the importance of matching range-wide sage-
grouse habitat management policies and guidelines with
habitat attributes that can be empirically shown to influence
sage-grouse occupancy and demographic performance at
broad spatial scales. Our findings suggest common metrics of
vegetation structure have no consistent relationship with nest
success, an influential demographic rate for which manage-
ment is commonly targeted, across the species' range. Nest
success is, however, only 1 of several important factors in-
fluencing sage-grouse population dynamics. Generally, our
results suggest managers should be skeptical of recom-
mendations that extrapolate habitat relationships beyond
their original spatial scale or ecological context. These should
be treated as hypotheses in need of testing before widespread
adoption.

Table 3. Parameter estimates (posterior medians) of a multivariate log-normal distribution describing the range-wide means (1), standard deviations (o),
and correlations (o) among 6 commonly reported vegetation characteristics at used (above diagonal) and available (below diagonal) greater sage-grouse nest

sites across their range in North America, based on studies from 1991-2019.

Use Auvailability P
Sagebrush Grass Forb Shrub Live grass  Residual grass

Variable )3 I )3 o cover cover cover height height height
Sagebrush cover 3.11 0.42 2.85 0.39 -0.28 —0.04 0.80 -0.50 —-0.46
Grass cover 2.46 0.62 227 0.69 —-0.59 0.70 —0.12 0.33 0.61
Forb cover 1.82 0.70 1.62 0.72 —0.46 0.80 0.10 0.23 0.37
Shrub height 3.72 0.30 3.62 0.34 0.74 -0.25 —0.18 —-0.28 -0.25
Live grass height 2.79 0.38 2.66 0.42 —0.57 0.40 0.44 —0.47 0.70
Residual grass height ~ 2.47 0.60 2.24 0.64 —0.43 0.55 0.53 -0.21 0.80
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APPENDIX A. GRASS HEIGHT
SENSITIVITY ANALYSIS

Slight differences in methods can significantly affect meas-
urements of vegetation structure (Di Stefano et al. 2018).
Reviewed studies variously reported measuring either 1) the
tallest grass plant(s) within a predetermined area (e.g., a
quadrat; hereafter tallest grass method) or 2) the grass plant
nearest a predetermined point (e.g., a mark along a transect;
hereafter nearest grass method). This methodological variation
introduces noise into grass height variables that could obscure
their influence on nest success. We explored the potential ef-
fect of this variation on our inference by identifying studies
using the nearest grass method, determining the average per-
cent difference between grass heights in these studies and grass
heights from other studies with a linear mixed effects model on
log-transformed measurements of grass height with a random
effect for study, using the estimated coeflicient from the fitted
model as a correction factor to adjust grass heights from
studies that used the nearest grass method, and refitting the
meta-regression model. We did not alter grass heights from
studies that did not report grass measurement method because
they were statistically indistinguishable from studies that re-
ported using the tallest grass method (Fig. Al).

On average, live grass heights among studies using the
nearest grass method were 78.3% of live grass heights from
studies using the tallest grass method (Bpearest = —0.24 £0.12
[SE]). Only 3 studies using the tallest grass method reported
residual grass heights. We felt this was insufficient to estimate
a separate measurement effect size, so we assumed the effect
would be similar and used the same correction factor to adjust
residual grass heights from those studies.

These adjustments had no effect on the most supported use
model; the intercept-only model still received the majority of
support with a Bayes factor of 7.35. The second-ranked model,
which received weak support with a Bayes factor of 2.80,
contained a negative effect of forb cover on nest success
(B=-0.09, 95% CRI=—0.25 to 0.08), and the third ranked
model, with a Bayes factor of 2.26, indicated a negative effect
of sagebrush cover (8=-0.05, 95% CRI=—-0.25 to 0.15).
Bayes factors of all other models were <2.

Results were similar for the availability model. After ad-
justment of grass heights, the intercept-only model re-
mained the most supported with a Bayes factor of 5.75. A
model with a positive effect of sagebrush cover (§=0.14,
95% CRI=-0.08 to 0.37) ranked second with a Bayes
factor of 2.90, and a model with a negative effect of live
grass height (8=—0.11, 95% CRI =—0.31 to 0.08) ranked
third with a Bayes factor of 2.54. The fourth ranked model,
with a Bayes factor of 2.06, included a negative effect of
residual grass height (8=-0.08, 95% CRI=-0.30 to
0.12). Bayes factors of all other models were <2.
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Figure Al. Mean live grass height at greater sage-grouse nests among
158 study units from 34 studies conducted across their range in North
America from 1991-2019, by measurement method.

Correcting grass heights to account for methodological
differences did not appreciably change inference with regard
to the effect of grass height on nest success. Model rankings
were similar to rankings using uncorrected values for both the
use and availability models, and the direction of effects was
unchanged. Therefore, it appears exceedingly unlikely that
true positive associations were simply obscured by noise in-
troduced by variable methods of measuring height of grasses.

APPENDIX B. CORRECTION OF GRASS
AND FORB COVER ESTIMATES USING
VARIOUS METHODS

Among studies reporting cover of herbaceous vegetation
(grasses and forbs), most used visual estimation aided by 20 X
50-cm quadrats as described in Daubenmire (1959
Daubenmire's method). Daubenmire's method involves
estimating cover of each species or functional group of in-
terest within the quadrat to 1 of 6 cover classes: 1= (0-5%)],
2=(5-25%], 3=(25-50%], 4=(50-75%], 5=(75-95%],
and 6 =(95-100%]. The midpoints between the lower and
upper bounds of cover classes (e.g., 0.25%, 15%, 37.5%) re-
corded within several sampled quadrats at each plot are
averaged to estimate average cover at the plot. Though fast
and repeatable, Daubenmire's method overestimates cover of
species or functional groups with sparse cover (Floyd and
Anderson 1987). The method assumes true cover is uni-
formly distributed around the midpoints of cover classes. If,
however, values below the midpoint of cover classes are more

common than values above the midpoint, Daubenmire's
method will produce positively biased estimates.

Several reviewed studies used narrower cover classes such
as the nearest 5% (Burnett 2013) or 1% (Smith et al. 20184;
Olsen 2019). Another (Schroff et al. 2018) used the line-
point intercept method to estimate cover, which tends to
produce higher estimates of cover than either Daubenmire's
method (Thacker et al. 2015) or visual estimation to the
nearest 1% (Symstad et al. 2008). Finally, one study used
the line intercept method (Canfield 1941) to estimate cover
(Fischer 1994). Thus, to allow direct comparison among
studies, we sought to standardize cover estimates to be
consistent with a single method.

We performed simulations to quantify the expected bias as-
sociated with each visual estimation method relative to true
cover. For a range of mean cover values () from 1-60% in
increments of 1%, we simulated estimating cover using the
3 visual estimation techniques described above as follows. First,
we fit a linear model to estimate the relationship between re-
ported sample means, ¥, and sample standard deviations, s(x),
of grass cover from the reviewed studies (Fig. B1). A square-
root transformation of ¥ produced the best linear fit. We used
the coeflicients from this fitted model to determine the ap-
propriate standard deviation (0) for each simulated value of .

For values of u <40%, we found a beta distribution was
best able to reproduce a realistic distribution of cover, so we
converted from percent to proportion and reparametrized u
and o to the beta shape parameters & and 4
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Figure B1. We fit a linear model relating the sample standard deviation
s(x) to the square root of the sample mean & of percent cover of grasses
among 7= 84 study units reporting grass cover in available sage-grouse
nesting habitat across the species' range in North America, 1991-2019. We
then used this model to simulate replicate samples of herbaceous cover
from populations with true means ranging from 1% to 60% to characterize
bias associated with different visual estimation methods.
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For values of y>40% we drew values from a truncated
normal distribution N(u,0) T(0,100) and divided by 100.

We drew 600 samples from the resulting beta or truncated
normal distributions to simulate a cover sample from a
typical nesting study. We chose this sample size because the
typical sample size of nests or available plots among re-
viewed studies was about 50 and a typical protocol involved
sampling 12 quadrats at each plot (50 X 12 = 600). We then
converted these 600 known cover values into cover classes as
if we were using 1) Daubenmire's method, or 2) the nearest
1% or 5% method. We converted simulated Daubenmire
data to midpoints of the 6 proportional cover classes (i.e.,
0.025, 0.15, 0.375, 0.625, 0.85, or 0.975) and rounded si-
mulated nearest 5% data to the nearest 5% (e.g., 0, 0.05, 0.1,
0.15). Finally, we averaged the resulting data from each
simulated dataset. We repeated this procedure 1,000 times
to obtain the expected (mean) cover estimate associated
with each method for each simulated known cover value.

Assuming observers accurately assign cover to the appro-
priate classes, Daubenmire's method was negligibly biased
(expected cover—known cover) at the upper range of tested
values (Fig. B2). Estimates of cover values below about
20%, however, were significantly positively biased using
Daubenmire's method. In particular, cover values from
1-11% had expected bias in excess of 20% of the mean. The
nearest 5% method, on the other hand, produced a negligible
expectation of bias across the range of cover values commonly

reported for sage-grouse nesting habitat, though estimates of
cover values <10% were slightly negatively biased (Fig. B2).
This did not pose a problem for our particular analyses be-
cause cover values reported in studies using the nearest 5%
method were all >2.5%, where absolute bias was expected to
be <0.5%.

Cover of grasses and forbs in sage-grouse nesting and
brood-rearing habitat is typically <15% (Hagen et al. 2007),
a range where Daubenmire's method is particularly biased.
However, Daubenmire's method has been established as the
standard for monitoring sage-grouse habitat (Connelly et al.
2003), reflected in the fact that 85% of reviewed studies
used it (T'able S1). Therefore, we standardized all studies to
be consistent with estimates using Daubenmire's method
rather than attempt to correct the bias inherent in the
majority of reported cover values.

We assumed studies using either the nearest 5% or nearest
1% visual estimation method were unbiased and we adjusted
estimates to reflect the expected bias associated with
Daubenmire's cover class method. For the study employing
line-point intercept, we first adjusted estimates using
percent differences reported in Symstad et al. (2008),
then standardized as above. Specifically, Symstad et al.
(2008:427) report that line-point intercept estimates were
36% higher for cover of grasses and 4% lower for cover of
forbs than estimates from the nearest 1% visual estimation
method.
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Figure B2. Using cover classes described by Daubenmire (1959), average cover among 600 simulated quadrats was biased up to >2.5% at values typical of
sage-grouse nesting habitat. Estimating cover to the nearest 5% was minimally biased over the range reported in most studies, though a slight negative bias

was apparent at cover <10%.
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